消息
×
loading..

Effective density of surfaces near Teichmüller curves

  • 133
  • A+

:唐思远(北京大学)
:2025-05-26 10:00
:海韵园行政楼C503

报告人:唐思远(北京大学)

 间:202552610:00

 点:海韵园行政楼C503

内容摘要:

The study of orbit dynamics for the upper triangular subgroup P in SL(2, R) holds fundamental significance in homogeneous and Teichmüller dynamics. In this talk, we shall discuss the quantitative density properties of P-orbits for translation surfaces near Teichmüller curves. In particular, we discuss the Teichmüller space H(2) of genus two Riemann surfaces with a single zero of order two, and its corresponding absolute period coordinates, and examine the asymptotic dynamics of P-orbits in these spaces.

人简介

唐思远,北京大学北京国际数学研究中心博士后。20225月博士毕业于印第安纳大学布鲁明顿,博士导师David Fisher教授,研究方向为动力系统和遍历论。现主要从事齐性动力系统和Teichmüller动力系统中的刚性理论研究,相关结果发表在了《J. Mod. Dynam.》、《Ergod. Theor. Dyn. Syst.》等学术期刊。

 

联系人:吴伟胜