Matrix Kendall’s tau in High-dimensions: with Applications to Matrix Factor Model and 2-Dimensional (sparse) Principal Component Analysis

  • A+

:何勇(山东大学)
:2024-05-31 10:30
:海韵园实验楼105报告厅

报告人:何勇(山东大学)

 间:202453110:30

 点:海韵园实验楼105报告厅

内容摘要:

In this talk, I will introduce a new type of Kendall's tau for robust statistics, names as matrix-type Kendall's tau, which generalize the spatial Kendall's tau (Marden, 1999) in the literature to deal with random matrix elliptical observations. I will elaborate on its use in robust estimation for both factor model and principal eigenvectors (under both sparse and non-sparse settings) in High-dimensions. I will also introduce how to extend the tool to deal with high-order tensors. We also develop an R package “MKendall” which is available at CRAN. 

人简介

何勇,山东大学金融研究院教授, 博士生导师。山东大学齐鲁青年学者, 山东省高等学校“金融科技数学理论”青年创新团队负责人。主要从事金融计量统计、数理统计以及机器学习等方面的研究,在国际统计学、计量经济学权威期刊JOE, JBES, Biometrics(封面文章),BiostatisticsJCGS等发表研究论文30余篇;现主持国家自然科学基金面上项目。获第一届统计科学技术进步奖一等奖(第二位),担任中国现场统计研究会生存分析分会副理事长、中国现场统计研究会机器学习分会常务理事及JASA, JRSSB, AOS, JOE, JBES, Biometrics等国际学术期刊审稿人。

 

联系人:周达