Regular Cayley Maps of Elementary Abelian p-groups

  • A+

:杜少飞(首都师范大学)
:2022-09-28 10:00
:腾讯会议ID:544-693-555(无密码)

报告人:杜少飞(首都师范大学)

时  间:928日上午10:00

地  点:腾讯会议ID544-693-555(无密码)

内容摘要:

A (topological) map is a cellular decomposition of a closed surface. A common way to describe maps is to view them as 2-cell embeddings of graphs. An orientable map is called regular if its group of orientation preserving automorphisms acts arc-regular.  Regular Cayley Maps are regular embeddings of Cayley graphs.

Recently, regular Cayley maps of cyclic groups and dihedral groups have been classified. Then a nature question is to classify regular Cayley maps of elementary abelian p-groups. In this talk, a complete classification of regular Cayley maps of elementary abelian p-groups will be given and moreover, the number of these maps and their genera will be enumerated.

人简介:

杜少飞,首都师范大学数学科学学院教授。1996年在北京大学获得博士学位,师从徐明曜教授,研究方向为有限群与组合结构。从1999年起担任首师大教授,并于2002年任博士生导师。26年来,在半对称图、图的正则覆盖、正则地图、图的Hamilton圈以及其它有限群论和代数组合问题上做了大量工作,在包括J. Comb Theory Ser. B J. Comb Theory Ser. A Combinatorica J. AlgebraComm. in Algebra在内的国际组合数学和代数学等杂志上发表论文多篇。目前担任国外SCI期刊 J. Algeb. Comb. Ars Math. Contemp 的编委。

 

联系人:陈继勇