Seminars on Numerical Algorithms, Analyses, and Applications: Error estimates of a bi-fidelity method for a multi-phase kinetic-fluid coupled system with random inputs

  • A+

:林怡雯(上海交通大学)
:2024-06-21 16:30
:海韵园实验楼105报告厅

报告人:林怡雯(上海交通大学

 间:202462116:30

 点:海韵园实验楼105报告厅

内容摘要:

Consider kinetic-fluid models for a mixture of flows, where the disperse phase is made of particles with distinct sizes. This leads to a system coupling the incompressible Navier–Stokes equations to the Vlasov–Fokker–Planck equations. Uniform error estimates of a bi-fidelity method for a kinetic-fluid coupled model with random initial inputs in the fine particle regime are proved. The main analytic tool is the hypocoercivity analysis for the multi-phase Navier-Stokes-Vlasov-Fokker-Planck system with uncertainties, considering solutions in a perturbative setting near the global equilibrium. Besides, we have developed an asymptotic-preserving scheme for such multi-phase flow system, efficiently in both kinetic and hydrodynamic regimes. Numerical examples illustrate the accuracy and efficiency of the bi-fidelity method. 

人简介

林怡雯,上海交通大学数学科学学院博士后,主要研究动理学-流体两相流问题与正反散射问题及其不确定性量化。主持中国博士后科学基金项目2项,NSFC青年科学基金项目1项,入选上海交通大学“2021年度晨星博士后激励计划”,在SINUMJMPAJDECiCP等期刊发表多篇文章。

 

联系人:赵状