Seminars on Numerical Algorithms, Analyses, and Applications: Error estimates of a bi-fidelity method for a multi-phase kinetic-fluid coupled system with random inputs
- A+
:林怡雯(上海交通大学)
:2024-06-21 16:30
:海韵园实验楼105报告厅
报告人:林怡雯(上海交通大学)
时 间:2024年6月21日16:30
地 点:海韵园实验楼105报告厅
内容摘要:
Consider kinetic-fluid models for a mixture of flows, where the disperse phase is made of particles with distinct sizes. This leads to a system coupling the incompressible Navier–Stokes equations to the Vlasov–Fokker–Planck equations. Uniform error estimates of a bi-fidelity method for a kinetic-fluid coupled model with random initial inputs in the fine particle regime are proved. The main analytic tool is the hypocoercivity analysis for the multi-phase Navier-Stokes-Vlasov-Fokker-Planck system with uncertainties, considering solutions in a perturbative setting near the global equilibrium. Besides, we have developed an asymptotic-preserving scheme for such multi-phase flow system, efficiently in both kinetic and hydrodynamic regimes. Numerical examples illustrate the accuracy and efficiency of the bi-fidelity method.
个人简介:
林怡雯,上海交通大学数学科学学院博士后,主要研究动理学-流体两相流问题与正反散射问题及其不确定性量化。主持中国博士后科学基金项目2项,NSFC青年科学基金项目1项,入选上海交通大学“2021年度晨星博士后激励计划”,在SINUM、JMPA、JDE、CiCP等期刊发表多篇文章。
联系人:赵状