Torsion points of abelian varieties over torsion fields

  • A+

:王溪源(俄亥俄州州立大学)
:2023-05-02 11:00
:Zoom会议ID:968 0121 1012(密码:111111)

报告人:王溪源(俄亥俄州州立大学

 间:20235211:00

 点:Zoom会议ID968 0121 1012(密码111111

内容摘要:

Let A be an abelian variety defined over a number field K. The well-known Mordell-Weil theorem states that for any finite extension L/K, the torsion subgroup of A(K) is finite. However, over the algebraic closure Kalg, the torsion subgroup of A(Kalg) is infinite. Therefore, a natural question arises: does the finiteness property of the torsion subgroup of A(L) hold for various infinite algebraic extensions L/K? In this talk, we will explore this question in the context where L is the "torsion field" of a different abelian variety. This is joint work with Jeff Achter and Lian Duan. If time permits, we will also formulate this question in a much more general setting and try to ask some new questions.

人简介

王溪源,俄亥俄州州立大学博士后,博士毕业于约翰霍普金斯大学。主要研究方向为算术代数几何, 研究成果发表或已被接受于 Mathematical Research Letters, Trans. Amer. Math. Soc.等国际数学期刊。

联系人:易少云