Seminar on Discrete Mathematics: Progress On MacMahon's partition analysis
- A+
:辛国策(首都师范大学)
:2023-04-25 14:30
:腾讯会议ID:541-829-235(无密码)
报告人:辛国策(首都师范大学)
时 间:2023年4月25日下午14:30
地 点:腾讯会议ID:541-829-235(无密码)
内容摘要:
Constant term or residue evaluation is fundamental in Mathematics. Many problems in combinatorics, geometry, representation theory, especially problems related to linear Diophantine equations, can be converted using MacMahon's partition analysis to a constant term of an Elliott-rational function, where an Elliott rational function has denominator as a product of binomials. This type of problem can be solved theoretically, but is hard in practice. We will introduce the field of iterated Laurent series as a framework, and elementary algorithm using partial fraction decompositions. We talk about development in this area and applications to Integer Linear programming.
个人简介:
辛国策,首都师范大学数学科学学院教授。主要从事计数组合学和代数组合学方向的研究,在知名杂志,例如IMRN, JCTA上已发表40多篇科研论文,涉及线性丢番图方程,格路计数,行列式计算等。发展了以迭代Laurent级数域为基础的部分分式法,该方法在常数项计算,分拆理论,对称函数论等方向有广泛的应用,得到了国内外同行的高度评价。
联系人:靳宇