On the Variance Reduction of Hamiltonian Monte Carlo via an Approximation Scheme

  • A+

:苏中根(浙江大学)
:2023-04-10 15:00
:腾讯会议:834214030(无密码)

报告人:苏中根(浙江大学)

时  间:2023410日下午15:00-16:30

地  点:腾讯会议:834214030(无密码)

内容摘要:

Metropolised Hamiltonian Monte Carlo method was introduced from molecular dynamics to sample more efficiently from a high dimensional distribution, and has become more and more popular in recent years. Let (X i, i ≥ 0) be the Markov chain induced by the Metropolised Hamiltonian algorithm. For a suitable function f on the state space, we first establish the CLT for k−1/2Sk(f), where Sk(f) =\sum_{i=1}^k f(Xi), under the drift condition developed by Durmus et al (Ann. Stat., 2020). Based on the method of variance reduction given by Mijatovic et al (Bernoulli, 2018), we then obtain a sequence of control variates k−1Sk(gn) for k−1Sk(f), with the corresponding sequence of asymptotic variances σn2 converging to zero.

人简介:

苏中根,浙江大学教授, 博士生导师。1995年获复旦大学博士学位,主要从事概率极限理论及其应用研究,内容包括概率集中不等式,随机渗流模型,高维随机矩阵和随机增长过程等。在Probab. Theory Related Fields, Electron. J. Probab., Bernoulli, Stochastic Process. Appl.等发表论文四十余篇,编著出版的《概率极限理论基础》2021年获首届全国优秀教材(高等教育类)二等奖。

 

联系人:陈娴