Geometric Analysis Seminar:Harmonic functions with polynomial growth on manifolds with nonnegative Ricci curvature

  • A+

:黄显涛(中山大学)
:2023-04-04 10:00
:腾讯会议ID:886-752-058(无密码)

报告人:黄显涛(中山大学)

时  间:202344日上午10:00-11:30

地  点:腾讯会议ID886-752-058(无密码)

内容摘要:

Suppose (M, g) is an n-dimensional noncompact Riemannian manifold with nonnegative Ricci curvature, and let hk(M) be the dimension of the space of harmonic functions with polynomial growth of growth order at most k. In this talk, I will first review the previous works in estimating hk(M), then I will introduce my recent results on hk(M) in the case that M has maximal volume growth and the tangent cone at infinity of M is unique.

人简介:

黄显涛,中山大学数学学院副教授,硕士生导师。2014年博士于中山大学,博士毕业后在清华大学丘成桐数学科学中心担任博士后研究员,20168月至今在中山大学工作。目前主要研究兴趣是Ricci曲率有下界的流形和度量测度空间。曾在J. Reine Angew. Math, Math. Ann., Calc. Var. Partial Differential Equations等期刊上发表多篇SCI论文。   

 

联系人:夏超