Unboundedness of Tate-Shafarevich groups in cyclic extensions

  • A+

:欧阳毅(中国科学技术大学)
:2023-02-24 15:00
:腾讯会议ID:451-083-833(密码:123456)

报告人:欧阳毅(中国科学技术大学)

时  间:224日下午15:00-16:30

地  点:腾讯会议ID451-083-833(密码:123456

内容摘要:

Suppose K is a global field, L/K is a cyclic extension and A/K is an abelian variety. In this talk, we prove several unboundedness results of the Tate-Shafarevich groups Sha(A/L) under the conditions that:

 (1) A is a fixed abelian variety over K and L varies over cyclic extensions of K of the same degree, which give an affirmative answer to an open problem proposed by K. Cesnavicius;

 (2) L/K is a fixed cyclic extension, and either K is a number field and A varies over elliptic curvesor the degree of L/K is 2-power and A varies over quadratic twists of a principally polarized abelian variety, which generalize results of K. Matsuno and M. Yu respectively.

This is a joint work with Jianfeng Xie.

人简介:

欧阳毅,中国科学技术大学数学系教授,博士生导师。中国科大学士(1993)、硕士(1995),美国明尼苏达大学博士(2000)。毕业后在加拿大多伦多大学和清华大学工作。主要研究方向为代数数论和算术代数几何,论文发表在Crelle, Compositio Math., Pub. Mat., Sci. China Math., FFA, DCC等国际学术期刊上。2018年被评为安徽省教学名师,并荣获2017年宝钢优秀教师奖和2022年霍英东教育教学奖等荣誉。

 

联系人:易少云