The Cauchy-Riemann problem via extension operators

  • A+

:姚力丁(美国俄亥俄州立大学)
:2024-08-06 14:30
:海韵园数理大楼661

报告人:姚力丁(美国俄亥俄州立大学)

  间:2024-08-06 14:30

  点:海韵园数理大楼661

内容摘要:

The Cauchy-Riemann problem, also known as the $\overline\partial$-problem, is a central problem in several complex variables. It concerns the regularity estimates to the equation $\overline\partial u=f$ on forms in a bounded domain $\Omega\subset\mathbb C^n$. We will talk about the background of the $\overline\partial$-theory and our recent works using new technique from extension operators. We use the so-called Rychkov's extension operator, which extends functions on a bounded Lipschitz domain and has boundedness on all Besov spaces and Triebel-Lizorkin spaces.


人简介

姚力丁,俄亥俄州立大学访问助理教授(博士后)2022年博士毕业于威斯康星大学麦迪逊分校。研究方向是调和分析、多复变函数、函数空间及其应用,相关研究成果发表于Amer. J. Math., J. Funct. Anal., J. Fourier Anal. Appl., J. Geom. Anal., J. Anal. Math.重要学术期刊上。


 

联系人:杨波