
A Retrospective Look at Ricci Flow: Lecture 1

Bennett (Ben) Chow
Short Course at Xiamen University

March 20-30, 2023

Ben Chow Xiamen Short Course on Ricci Flow



Abstract

This is the first talk in the short course
“A Retrospective Look at Ricci Flow” given via Tencent
http://tianyuan.xmu.edu.cn/cn/MiniCourses/2077.html
at Xiamen University from March 20 to 30, 2023.

Lecture 1: Ricci Flow on Surfaces

In this talk we discuss the Ricci flow in dimension two, called the
Ricci flow on surfaces.

References:
Bennett Chow and Dan Knopf, Ricci Flow: An Introduction,
Chapter 5, AMS 2004.

Bennett Chow and Yutze Chow, Lectures on Differential Geometry,
Chapter 14, in preparation.
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The Gauss and scalar curvatures

Let (M2, g) be a Riemannian surface and let Rm denote its
Riemann curvature tensor. The Gauss curvature of g is defined by

K (x) := Rm(e1, e2)e2 · e1,

where {e1, e2} is any orthonormal frame at x on M2.

Figure: Author: Nicoguaro.
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The Ricci flow on surfaces equation

Let M2 be a closed (i.e., compact without boundary) surface. We
say that a 1-parameter family of metrics g(t), t ∈ I, where I is an
interval, is a solution to the Ricci flow on surfaces if

∂tg(x , t) = −R(x , t)g(x , t) (0.1)

for all x ∈ M2 and t ∈ I, where R = 2K is the scalar curvature.
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Shrinking round 2-spheres, I

A shrinking round 2-sphere is a solution to the Ricci flow on
surfaces:
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Shrinking round 2-spheres, II

Let g0 be the Riemannian metric associated to the 2-sphere S2 of
radius r0 > 0. The scalar of g0 is

Rg0 = 2r−2
0 .

Let g(t) be the Riemannian metric associated to the 2-sphere of
radius r(t), where

r(t) =
√

r2
0 − 2t.

Them g(t) is a solution to the Ricci flow on surfaces (exercise!)
and the metric shrinks to a point as t → T := r2

0 /2.
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Normalized Ricci flow on surfaces

The shrinking round 2-spheres example has the defect that the
Riemannian surfaces shrink to a point in a finite amount of time
T . To remedy this, we consider the normalized Ricci flow (NRF)
defined as follows:

∂tg(t) = (r − R(t))g(t),

where r denotes the average scalar curvature; i.e.,

r :=
∫

M R dµ∫
M dµ

.

This equation has the nice property that (exercise!):

Area(g(t)) ≡ constant = Area(g(0)).
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Short-time existence of the Ricci flow on surfaces

Theorem (Short-time existence of NRF)
For any closed Riemannian surface (M2, g0), there exists
T ∈ (0, ∞] and a unique family of metrics g(t), t ∈ [0, T ), that
satisfy the normalized Ricci flow

∂tg(t) = (r − R(t))g(t)
with the initial condition g(0) = g0.

Moreover, the metrics g(t) are pointwise conformal to the initial
metric g0; that is, there exist functions u(t) : M2 → R such that

g(x , t) = e2u(x ,t)g0(x)

for all x ∈ M2. That is, for the metrics g(t) the angles between
tangent vectors are independent of time.
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What is the behavior of solutions?

Short-time existence means that given any Riemannian metric g0
on a closed surface, there exists a solution g(t) for short time
t ∈ [0, T ). The main question now is:

What is the qualitative behavior of solutions in general?

Figure: Author: CBM.
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Evolution of the curvature function

Under the normalized Ricci flow on surfaces, the scalar curvature
function evolves by the equation:

∂tR(t) = ∆g(t)R(t) + R(t)2 − r R(t). (∗)

Note that this is a heat-type (“diffusion”) equation with a
quadratic “reaction” term. Thus, such an equation is called a
reaction-diffusion equation.

Question: How can we use this equation to help us
understand the qualitative behavior of the solution?
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Proof of the curvature evolution formula

Lemma

If Riemannian metrics g(t), t ∈ [0, T ), on M2 satisfies
∂
∂t g(t) = v(t)g(t), where v(t) : M2 → R for each t ∈ [0, T ), then

∂tR(t) = −∆g(t)v(t) − v(t)R(t).
In particular, taking v(t) = r − R(t) yields (∗).

Proof. If g(t) = e2u(t)g0, then
R(t) = e−2u(t)(R0 − 2∆0u(t)

)
= e−2u(t)R0 − 2∆g(t)u(t),

Thus, if ∂tg = vg , then 2∂tu(t) = v(t) and
∂tR(t) = −2∂tu(t)e−2u(t)(R0 − 2∆0u(t)

)
− 2e−2u(t)∆0 (∂tu(t))

= −v(t)R(t) − e−2u(t)∆0v(t)
= −v(t)R(t) − ∆g(t)v(t).
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Curvature as a supersolution to the heat equation

Since r is constant in time, we have (exercise!):

∂t(R(t) − r) = ∆g(t)(R(t) − r) + (R(t) − r)2 + r (R(t) − r).

Since (R(t) − r)2 ≥ 0, this implies:

∂

∂t (R(t) − r) ≥ ∆g(t)(R(t) − r) + r (R(t) − r),

which in turn implies:

∂t(e−rt(R(t) − r)) ≥ ∆g(t)(e−rt(R(t) − r)).

Because of this, we say that e−rt(R(t) − r) is a supersolution to
the heat equation.
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The parabolic maximum principle

The parabolic maximum principle is a tool to estimate
supersolutions to the heat equation.

Theorem (Parabolic minimum principle)
If w : M2 × [0, T ) → R, where M2 is compact, is a supersolution
to the heat equation and if w(x , 0) ≥ −C for all x ∈ M2, where C
is some constant, then

w(x , t) ≥ −C for all x ∈ M2, t ∈ [0, T ). (0.2)

By applying the parabolic maximum principle to e−rt(R(t) − r), we
conclude that there exists a constant C such that

e−rt(R(x , t) − r) ≥ −C
for some constant C depending only on the initial metric g0.
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A good lower bound for the scalar curvature

By the previous slide, we have that the scalar curvature function
has the following lower bound:

R(x , t) − r ≥ −Cert

for all x ∈ M2 and t ∈ [0, T ). This estimate is particularly effective
when r < 0. This is because in this case we have a lower bound for
minx∈M2(R(x , t) − r) that is exponentially decaying in time.

Can we prove an effective upper bound in the case where
r < 0?

For this, the quadratic term (R(t) − r)2 in

∂t(R(t) − r) = ∆g(t)(R(t) − r) + (R(t) − r)2 + r (R(t) − r)

is a bad (positive) term.
Ben Chow Xiamen Short Course on Ricci Flow



The difficulty with obtaining an upper bound for R

The ODE associated to the PDE for R(t) − r is obtained by
dropping the Laplacian term. The result is the ODE:

d
dt S = S2 + rS. :

The solution to this ODE with initial data S(0) = S0 ̸= 0 is given
by

S(t) = r
1 − (1 − r/S0)ert .

If S0 > 0, then unfortunately (even when r < 0)

S(t) → ∞ as t → T ,

where T := −1
r ln(1 − r/S0). That is, we have finite-time blow up

of the solution to the ODE.
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The lower and upper bounds for R − r

In the figure below, the lower bound for R(x , t) − r is represented
by the red curve. The upper bound is represented by the blue
curve. This is the best we can do by looking only at the evolution
equation for R − r .

R(x , t) − r

t
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The potential function

Let R(x , t) := R(x , t) − r . By definition,∫
M2

R(x , t)dµ(x , t) = 0.

By Hodge theory, there exists a function f (t) : M2 → R satisfying:
∆g(t)f (t) = R(t). (0.3)

f is called the potential function. One can derive that the
functions f (t) satisfy the linear heat-type equation:

∂f
∂t (t) = ∆g(t)f (t) + r f (t).

So, by the maximum principle, we have that
|f (x , t)| ≤ Cert .

But what about estimating the curvature R(x , t)?
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Curvature upper bound, I

Not only is the potential function a solution to a linear heat-type
equation, its gradient squared is a subsolution to a linear heat-type
equation:

(∂t − ∆) ∥∇f ∥2 = −2∥∇2f ∥2 + r∥∇f ∥2.

In particular,
(∂t − ∆) ∥∇f ∥2 ≤ r∥∇f ∥2.

By applying the maximum principle to this equation, we obtain the
estimate:

∥∇f ∥2(x , t) ≤ ert .

Next, we want to take advantage of the good (negative) term
−2∥∇2f ∥2.
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Curvature upper bound, II

Recall that R := R − r satisfies
(∂t − ∆)R = R2 + rR = (∆f )2 + rR.

By combining this with
(∂t − ∆) ∥∇f ∥2 = −2∥∇2f ∥2 + r∥∇f ∥2,

we obtain
(∂t − ∆) (R + ∥∇f ∥2) = −2

∥∥∇2f − 1
2(∆f )g

∥∥2 + r(R + ∥∇f ∥2).
In particular,

(∂t − ∆) (R + ∥∇f ∥2) ≤ r(R + ∥∇f ∥2).
By applying the parabolic maximum principle to this equation, we
obtain the estimate

R(x , t) ≤ (R + ∥∇f ∥2)(x , t) ≤ Cert .

We conclude that |R(x , t)| ≤ Cert .
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The convergence theorem for χ(M2) < 0

When r < 0, which by the Gauss–Bonnet formula is equivalent to
χ(M2) < 0, one can use the estimate |R(x , t)| ≤ Cert as a pillar to
prove the following long-time existence and convergence
theorem.

Theorem (Uniformization of χ < 0 surfaces by Ricci flow)
Let (M2, g0) be a closed oriented Riemannian surface with
negative Euler characteristic χ(M2) < 0. Then there exists a
solution g(t) to the normalized Ricci flow for all time t ∈ [0, ∞)
with g(0) = g0. As t → ∞, g(t) converges in each Ck -norm to a
C∞ metric g∞ with constant scalar curvature equal to 4πχ(M2)

Area(g0) .
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Higher derivatives of curvature estimate

Besides the curvature decay estimate, we need decay estimates for
the higher derivatives of the curvature. This is provided by the
following.

Lemma (Higher derivatives of curvature estimate)

Under the normalized Ricci flow on a closed surface M2 with
χ(M2) < 0 and for each positive integer k, there exists a positive
constants Ck depending only on the initial metric g0 and k such
that

∥∇kR∥2(x , t) ≤ Ck e
r
2 t (0.4)

for all x ∈ M2 and t ∈ [0, T ).

This result is used to prove that g(t) converges as t → ∞ to a
smooth metric g∞ in each Ck -norm, where k ≥ 0.
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The convergence theorem for χ(M2) = 0

When r = 0, which by the Gauss–Bonnet formula is equivalent to
χ(M2) = 0, i.e., M2 is diffeomorphic to a torus, one has the
estimate |R(x , t)| ≤ C . By maximum principle estimates or by
integral estimates, one actually prove decay estimates for the
curvature and its derivatives. This yields the following result.

Theorem (Uniformization of χ = 0 surfaces by Ricci flow)
Let (M2, g0) be a closed oriented Riemannian surface with zero
Euler characteristic χ(M2) = 0. Then there exists a solution g(t)
to the normalized Ricci flow for all time t ∈ [0, ∞) with g(0) = g0.
As t → ∞, g(t) converges in each Ck -norm to a C∞ metric g∞
with zero scalar curvature.
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The Ricci flow on the 2-sphere, I: Introduction

The remaining case of the Ricci flow is when r > 0, which is
equivalent to χ(M2) > 0, in which case M2 is diffeomorphic to S2.
The result we are aiming to prove is the following.

Theorem (Uniformization of χ > 0 surfaces by Ricci flow)
Let (M2, g0) be a closed oriented Riemannian surface with positive
Euler characteristic χ(M2) > 0. Then there exists a solution g(t)
to the normalized Ricci flow for all time t ∈ [0, ∞) with g(0) = g0.
As t → ∞, g(t) converges in each Ck -norm to a C∞ metric g∞
with positive scalar curvature.
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The Ricci flow on the 2-sphere, II: Need for a new estimate

From now on, we assume that M2 is diffeomorphic to S2, so that
χ(M2) > 0 and r > 0. In this case, we may use the equation

∂tR(t) = ∆g(t)R(t) + R(t)2 − r R(t) ≥ ∆g(t)R(t) − r R(t)

yields the following lower bound for curvature:

R(x , t) ≥ −Ce−rt .

In other words, as t → ∞, the curvature tends to non-negative if
not already positive. On the other hand, the improved upper
bound yielded:

R(x , t) ≤ Cert ,

which has exponential growth since r > 0.
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The Ricci flow on the 2-sphere, III: Harnack estimate (a)

A fundamental Bochner formula in geometric analysis says: For
any function u : Mn → R,

1
2∆|∇u|2 = ⟨∇u, ∇∆u⟩ + |∇2u|2 + Ric(∇u, ∇u).

In particular, if (Mm, g) satisfies Ric ≥ 0, then
1
2∆|∇u|2 ≥ ⟨∇u, ∇∆u⟩ + |∇2u|2.

A fundamental application of this inequality is the following
Liouville Theorem for harmonic functions.
Theorem (Yau)
Let (Mn, g) be a complete Riemannian manifold with non-negative
Ricci curvature. If u : Mn → R is a positive harmonic function,
i.e., ∆u = 0, then u must be a constant.
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The Ricci flow on the 2-sphere, IV: Harnack estimate (b)

The method of proof of the Yau’s theorem for harmonic functions
(satisfying an elliptic equation) applies to positive solutions of the
heat equation (a parabolic equation). Namely, Li and Yau proved
the following result.

Theorem (Li–Yau inequality)
Let (Mn, g) be a complete Riemannian manifold with non-negative
Ricci curvature. If u : Mn × [0, ∞) → R be a positive solution to
the heat equation:

∂tu = ∆u.

Then we have the following differential Harnack estimate:
∂t ln u − |∇ ln u|2 = ∆ ln u ≥ − n

2t .
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The Ricci flow on the 2-sphere, V: Harnack estimate (c)

Let (x1, t1) and (x2, t2) be points in Mn × [0, ∞) with t1 < t2. If
we integrate the differential Harnack estimate
∂t ln u − |∇ ln u|2 ≥ − n

2t along space-time paths of the form

t 7→ (γ(t), t),

where γ : [t1, t2] → Mn is a constant speed minimal geodesic from
x1 to x2, then we obtain the following inequality for positive
solutions to the heat equation on complete Riemannian manifolds
with non-negative Ricci curvature:

u(x2, t2)
u(x1, t1) ≥

( t2
t1

)−n/2
e− d(x1,x2)2

4(t2−t1) ,

where d(x1, x2) denotes the distance between x1 and x2 with
respect to g .
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The Ricci flow on the 2-sphere, VI: Harnack estimate (d)

There is a similar Harnack estimate for the Ricci flow on surfaces
due to Hamilton. Let g(t) be a solution to the normalized Ricci
flow on S2 with positive scalar curvature. The Harnack quantity is:

Q := ∂

∂t ln R − ∥∇ ln R∥2

= ∆ ln R + R − r .

We now explain the main aspects of the derivation of the Harnack
estimate, which follows the method of Li and Yau. Firstly, we
compute the evolution equation for Q as:

∂tQ ≥ ∆Q + 2 ⟨∇ ln R, ∇Q⟩ + Q2 + rQ.

Note the similarity between this equation and the equation
satisfied by the scalar curvature R.
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The Ricci flow on the 2-sphere, VII: Harnack estimate (e)

Regarding ∂tQ ≥ ∆Q + 2 ⟨∇ ln R, ∇Q⟩ + Q2 + rQ, the parabolic
maximum principle says that the solution to the ODE dq

dt = q2 + rq
with q(0) ≤ minx∈S2 Q(x , 0) is a lower bound for Q; that is,

∂t ln R − ∥∇ ln R∥2 = Q(x , t) ≥ q(t) := − Crert

Cert − 1 .

This is the differential Harnack estimate for the Ricci flow on
surfaces. By integrating this estimate, we obtain:

Theorem (Hamilton’s Harnack estimate)
Let (S2, g(t)) be a solution to the normalized Ricci flow on
surfaces with R > 0. Let x1, x2 ∈ S2 and t1 < t2. Then for any
path γ : [t1, t2] → M2 with γ(t1) = x1 and γ(t2) = x2, we have

R(x2, t2)
R(x1, t1) ≥ e−C ′(t2−t1) exp

(
−

∫ t2

t1

1
4∥γ′(t)∥2

g(t)dt
)

.
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Hamilton’s surface entropy, I: Entropy for the heat
equation

Let (Mn, g) be a closed Riemannian manifold and let f : Mn → R
be a positive function with

∫
Mn f dµ = 1. The relative entropy of

the probability distribution f dµ is defined as

N(f ) := −
∫

Mn
f ln(f )dµ. (0.5)

If f (t) : Mn → R is a solution to the heat equation ∂t f = ∆f ,
then dN

dt = −
∫

Mn

(
ln(f )∂f

∂t + f ∂

∂t ln(f )
)

dµ

= −
∫

Mn
(ln(f )∆f + ∆f ) dµ

=
∫

Mn

∥∇f ∥2

f dµ

≥ 0.
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Hamilton’s surface entropy, II: Its definition and evolution

Given a closed Riemannian surface (S2, g) with positive curvature,
Hamilton’s surface entropy is defined by

N(g) :=
∫

M2
R ln R dµ.

One computes that
d
dt N = −

∫
M2

∥∇R∥2

R dµ +
∫

M2
R2dµ,

where R = R − r . Hamilton’s surface entropy monotonicity
formula says the following.

Theorem
If (S2, g(t)) is a solution to the normalized Ricci flow on surfaces
with positive curvature, then the entropy is monotonically
non-increasing: dN

dt (t) ≤ 0.
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Hamilton’s surface entropy, III: Monotonicity and its proof

We define the symmetric 2-tensor β by

β := −1
2Rg + ∇2f ,

where we recall that f is defined by ∆f = R. Hamilton’s surface
entropy monotonicity follows from the identity:

d
dt N(g(t)) = −

∫
M2

∥∇R∥2

R dµ +
∫

M2
R2dµ

= −4
∫

M2

∥ div(β)∥2

R dµ − 2
∫

M2
∥β∥2dµ

≤ 0.

What are the origins of this proof?
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Hamilton’s surface entropy, IV: Origins of the proof

Recall that β = −1
2Rg + ∇2f appears on the right-hand side of

the entropy monotonicity formula. We actually have the following:

(∂t − ∆) (R + ∥∇f ∥2) = −2 ∥β∥2 + r (R + ∥∇f ∥2).

This is actually the first occurrence of the tensor β in the study of
Ricci flow on surfaces. Moreover, we have the following important
monotonicity formula:

(∂t − ∆) ∥β∥2 = −2∥∇β∥2 − 2R∥β∥2 ≤ −2R∥β∥2.

In particular, if we can prove that R(x , t) ≥ c > 0 on M × [0, ∞),
then we can conclude that

∥β∥2 ≤ Ce−2ct .

How can we prove a uniform positive lower bound for R(x , t)?

Ben Chow Xiamen Short Course on Ricci Flow



A uniform positive lower bound for the scalar curvature

Using Hamilton’s Harnack estimate and the surface entropy
formula, one can prove that under the normalized Ricci flow on
surfaces with positive curvature, the curvature remains uniformly
bounded from above. That is, there exists a constant C such that

R(x , t) ≤ C for all x ∈ S2, t ∈ [0, ∞).

Then, by using the Harnack estimate again together with a
uniform diameter bound, one can prove that there exists a positive
constant c such that

R(x , t) ≥ c for all x ∈ S2, t ∈ [0, ∞).

As a result, we obtain

∥β∥2 ≤ Ce−2ct .
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Convergence of the normalized Ricci flow, I

There are a few steps to prove the convergence of the Ricci flow
on S2. Firstly, Hamilton considered the modified Ricci flow
equation defined by:

∂tg = 2β = −R g + 2∇2f = −R g + L∇f g ,

where L denotes the Lie derivative. Solutions to the normalized
Ricci flow and the modified Ricci flow with the same initial metric
are isometric.
Because of this, under the modified Ricci flow we obtain the same
estimate for β:

∥∂tg∥ = 4∥β∥2 ≤ Ce−2ct .

Using this, one can show that solutions to the modified Ricci flow
converge to a smooth metric g∞ on S2 as t → ∞.

What are the geometric properties of g∞?
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Convergence of the normalized Ricci flow, II

The limit g∞ under the modified Ricci flow, which is a smooth
Riemannian metric on S2, satisfies the equation

0 = β∞ := −1
2R∞ g∞ + ∇2

∞f∞
for some function f∞ : S2 → R. This equation is called the
shrinking gradient Ricci soliton equation. We call g∞ a
shrinking soliton for short. We can view this equation for g∞ and
f∞ as:

−R∞ g∞ = −r g∞ + L∇∞f∞(g∞).
Hamilton proved that on the 2-sphere the only solutions to this
equation satisfy f∞ = constant. Thus, g∞ satisfies

R∞ = r .

One then shows that for the original normalized Ricci flow, the
metrics g(t) converge to a smooth constant curvature metric on
S2.
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THANK YOU!
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