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Abstract

This is the fifth talk in the short course
“A Retrospective Look at Ricci Flow” given via Tencent
http://tianyuan.xmu.edu.cn/cn/MiniCourses/2077.html
at Xiamen University from March 20 to 30, 2023.

Lecture 5: Singularity Formation in Higher Dimensions

This talk is an introduction to the study of singularity formation
for the Ricci flow in higher dimensions.

References:
Bamler, R. H. Recent developments in Ricci flows.
Perelman, G. The entropy formula for the Ricci flow and its
geometric applications.
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Introduction

One of the main goals in Ricci flow is to understand singularity
formation and singularity models. The reason for this to be able to
define Ricci flows past singularity times via some version of Ricci
flow with surgery. Singularity formation is well understood in
dimensions two and three. This is due to the works of Hamilton,
Perelman, Brendle, and Bamler. A fascinating question is to
understand singularity formation in dimension four. In the past few
years, great progress and breakthroughs have been made by
Bamler. A general open question is: As in dimension three, can
Ricci flow be used to obtain topological results in dimension four?
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Review of Ricci solitons

Ricci solitons model singularities. Recall a shrinking gradient
Ricci soliton (shrinking soliton for short) is a triple (Mn, g , f )
satisfying the equation

Ric +1
2L∇f g = Ric +∇2f = 1

2g .

A special case of this is when f is constant, in which case we get
the Einstein metric equation Ric = 1

2g . By Myers’ Theorem,
such Einstein manifolds must be compact. One is interested in
both compact and noncompact shrinking gradient Ricci solitons,
especially noncompact ones. Examples of noncompact shrinking
gradient Ricci solitons are cylinders (Sk/Γ) × Rn−k , where k ≥ 2.

The steady soliton equation, as e.g. the 2D cigar soliton, is

Ric +∇2f = 0.
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Bamler’s Higher-Dimensional Theory, I

An aim of Ricci flow in higher dimensions is to prove the existence
of Ricci flow past singularity times (e.g. Ricci flow with surgery).
To this end there is recent striking progress due to Richard Bamler.

Theorem (Bamler)
Let (M4, g(t)), t ∈ [0, T ), be a Ricci flow on a closed 4-manifold
that develops a singularity at time T < ∞. If M4 is not
diffeomorphic to a shrinking Ricci soliton, then there exists an
associated singularity model which is one of the following:

1. 2-cylinder: S2 × R2,
2. 3-cylinder: (S3/Γ) × R,
3. Cone: A Riemannian cone with non-negative scalar curvature,

that is either a flat orbifold R4/Γ or the asymptotic cone of an
asymptotically conical shrinking Ricci soliton.
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Bamler’s Higher-Dimensional Theory, II

The result on the previous slide is a corollary of an extensive
theory of higher-dimensional singularity formation for Ricci
flow developed by Bamler. The goal of Bamler’s theory is to
enable one to continue the Ricci flow past singularities, where one
has some understanding of the topological change as the time
passes singularity times.
Some highlights of Bamler’s theory are:
▶ Role of the conjugate heat kernel, the pointed Nash entropy,

and Wasserstein 1-distance in the analysis of Ricci flow.
▶ A general theory of metric flows and a general compactness

theorem associated to this theory.
▶ A structure theory for singularity formation inspired by

Cheeger–Colding theory.
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Ricci solitons

For singularity analysis in all dimensions, Ricci solitons play an
important role. We will now discuss some of what is known about
the geometry and topology of Ricci solitons. We first discuss
shrinking solitons and then steady solitons.
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Low-dimensional classification of shrinking Ricci solitons
Just as the study of 3D Ricci flow is related to the study of 2D
Ricci flow, the study of 4D Ricci flow is related to the study of 3D
Ricci flow.
In view of the importance of shrinking gradient Ricci solitons in
the Ricci flow theories of Hamilton, Perelman, and Bamler, we
discuss some aspects of the qualitative study of shrinking solitons.
In dimension 2, the only complete shrinking solitons on orientable
surfaces are the Gaussian soliton of the flat R2 with the potential
function f (x) = |x |2

4 and the round sphere S2 with constant scalar
curvature R = 1.
In dimension 3, the only complete shrinking solitons on orientable
3-manifolds are the Gaussian soliton of the flat R3 with the
potential function f (x) = |x |2

4 , spherical space forms S3/Γ, the
cylinder S2 × R, and its quotient (S2 × R)/Z2.
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Estimates for shrinking Ricci solitons, I
What can we say about the geometry of Ricci solitons?

Let (Mn, g , f ) be a complete non-compact shrinking soliton, so
that Ric +∇2f = 1

2g . Recall that
R + |∇f |2 = f .

Then there exists an associated complete Ricci flow defined on
the ancient time interval (−∞, 1).
B.-L. Chen proved that for any ancient complete Ricci flow, we
have R ≥ 0. Thus,

|∇f |2 ≤ f , i.e.,
∣∣∇√

f
∣∣2 ≤ 1

4 , i.e.,
∣∣∇(2

√
f )

∣∣ ≤ 1.

Fix a point o ∈ Mn. Then, for any x ∈ Mn, we have
f (x) ≤ 1

4
(
d(x , o) + C

)2
,

where C = 2
√

f (o). So we have a good upper bound for the
potential function f . This implies R(x) ≤ 1

4
(
d(x , o) + C

)2.
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Estimates for shrinking Ricci solitons, II

Huai-Dong Cao and Detang Zhou (with a contribution by
Munteanu), proved the following important lower bound for the
potential function of a complete non-compact shrinking soliton:

f (x) ≥ 1
4

(
d(x , o) − C

)2
+,

where A+ := max{A, 0} for A ∈ R. Therefore f attains its
minimum on Mn. Choosing o to be a minimum point of f , one
can prove that

f (x) ≥ 1
4

(
d(x , o) − 5n

)2
+;

this improvement was by Robert Haslhofer and Reto Müller. Cao
and Zhou’s estimate is important in the analysis of shrinking
solitons.
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Estimates for shrinking Ricci solitons, III

In fact f (o) = min f ≤ n
2 . So we have the qualitatively sharp

estimates for the potential function:
1
4

(
d(x , o) − 5n

)2
+ ≤ f (x) ≤ 1

4
(
d(x , o) +

√
2n

)2
.

What about the curvature of complete shrinking solitons?
Firstly, recall that R ≥ 0. One can show that either (Mn, g , f ) is
the Gaussian shrinking soliton on Rn or R > 0. So, from now on
we assume that R > 0.
Peng Lu, Bo Yang, and C. proved the following: There exists a
constant c > 0 depending on the shrinking soliton such that

R(x) ≥ c(1 + d(x , o))−2.

What upper bounds are known for shrinking Ricci solitons?

Ben Chow Xiamen Short Course on Ricci Flow



Estimates for four-dimensional shrinking solitons, I

Again recall that
R + |∇f |2 = f .

This implies that

R(x) ≤ f (x) ≤ 1
4

(
d(x , o) +

√
2n

)2
.

Michael Freedman, Henry Shin, Yongjia Zhang, and C. showed
that in dimension 4, one can improve this as follows.

Theorem
If (M4, g , f ) is a shrinking gradient Ricci soliton that is also a
singularity model, then there exists a constant C depending on
(M4, g , f ) such that

| Rm |(x) ≤ C
(
d(x , o) + C

)2
.
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Estimates for four-dimensional shrinking solitons, II
The idea of the proof is as follows. Suppose the quadratic growth
estimate for | Rm | is false. Then there exists xi → ∞ such that

Ki := | Rm |(xi) ≫ Cd2(xi , o) ≥ R(xi).
Use point selection to obtain a complete limit (M4

∞, g∞, x∞).
Since we are rescaling by the factors Ki , for the limit, we have
Rg∞ ≡ 0. We obtain a limit solution g∞(t) to Ricci flow, so the
equation ∂tR = ∆R + 2| Ric |2 for g∞(t) implies that Ricg∞ ≡ 0.
By Perelman’s no local collapsing theorem, g∞ has Euclidean
volume growth; i.e., Vol(Br ) ≥ cr4 for some c > 0 and all r > 0.
By a theorem of Cheeger and Naber, (M4

∞, g∞) is an ALE. By
the Cheeger–Gromov convergence and since we have a 4D shrinker
model, this implies that there is an unbounded number of disjoint
embeddings of the Ricci flat ALE in the original compact
4-manifold. By topological and geometric ((co)homology and
characteristic classes) methods, one can obtain a contradiction.
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Estimates for four-dimensional shrinking solitons, III

There are examples of Kähler shrinking Ricci solitons (including in
dimension 4) that are asymptotically conical. These are called
FIK solitons (for Feldman, Ilmanen, and Knopf). For such
shrinking solitons, we have

R(x) ≈ c d(x , o)−2

as x → ∞. So the lower scalar curvature bound is qualitatively
sharp.

Is the upper scalar curvature bound qualitatively sharp?
Bamler has asked the following question:
Does there exist flying wing shrinking solitons with curvature

growing quadratically in certain directions?
Such shrinking solitons would be somewhat analogous to the
Lai–Hamilton flying steady solitons.
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A shrinking flying wing?

A hypothetical shrinking flying wing is pictured below.
In the central region, as points tend to infinity, the shrinker looks
like S2 × R2, where S2 has a fixed radius. Along the edges, the
rescalings tend to the product of a 3D Bryant steady soliton and R.
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Estimates for four-dimensional shrinking solitons, III
What is the structure of 4-dimensional shrinking gradient

Ricci soliton singularity models?
Ovidiu Munteanu and Jiaping Wang proved the following result
without assuming the shrinking soliton is a singularity model.
Theorem (Munteanu and Wang)
Any complete non-compact 4-dimensional shrinking gradient Ricci
soliton with R(x) → 0 as x → ∞ must satisfy the estimate

| Rm |(x) ≤ C
(
d(x , o) + 1

)−2
.

This implies that the shrinking soliton is asymptotically conical.

We say (Mn, g) is asymptotic to a Riemannian cone
(C0Σn−1, gcone) if there are r0 and a diffeomorphism
Φ : Cr0Σ → Mn \ K , where K is a compact set, such that
(Cλ−1r0Σ, λ−2λ∗Φ∗g) converges as λ → ∞ to (C0Σ, gcone) in C2

loc.
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Asymptotically conical shrinking solitons, I

Picturing an asymptotically conical shrinking gradient Ricci soliton.
The shrinker (Mn, g , f ) is asymptotic to a cone C(Σn−1) over an
(n − 1)-dimensional closed Riemannian manifold (Σn−1, h).
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Asymptotically conical shrinking solitons, II

Brett Kotschwar and Lu Wang proved that any asymptotically
conical shrinking soliton is determined by its asymptotic cone.

Theorem (Kotschwar and Wang)
Let (Mn

1 , g1, f1) and (Mn
2 , g2, f2) be complete shrinking gradient

Ricci solitons. If there exists a topological end E1 in Mn
1 and a

topological end E2 in Mn
2 that are asymptotic to the same

Riemannian cone, then the universal covers of (Mn
1 , g1) and

(Mn
2 , g2) are isometric.

We remark that any asymptotic cone C(Σn−1) has nonnegative
scalar curvature and the (n − 1)-manifold Σn−1 has positive scalar
curvature. In particular, if n = 4, then by Perelman’s theorem, Σ3

is diffeomorphic to the connected sum of spherical space forms
S3/Γ’s and S2 × S1’s.
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Asymptotically conical shrinking solitons, III
Open problem: What can prove toward a classification of
4-dimensional asymptotically conical shrinking solitons?

In particular, if C(Σ3) is the asymptotic cone of a 4-dimensional
asymptotically conical shrinking soliton: What can one say
about the geometry of Σ3 besides that it has positive scalar
curvature?
For the FIK Kähler shrinker example, in dimension 4, Σ3 is a
Berger sphere with positive sectional curvature.
Are there examples of 4-dimensional asymptotically conical
shrinking soliton such that any of the following is not true?
▶ Σ3 has positive Ricci curvature (this implies that Σ3 is

diffeomorphic to S3/Γ).
▶ Σ3 has constant scalar curvature.
▶ Σ3 is a locally homogeneous space (this implies constant

scalar curvature).
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Asymptotic geometry of shrinking solitons, I

What is the structure of a 4-dimensional shrinking soliton
which does not satisfy R(x) → 0 as x → ∞?

One direction regarding this question is to understand the
asymptotic geometry at infinity of 4-dimensional shrinking solitons.
Munteanu and Wang have a number of results in this direction.
Some of the results that they have proved are as follows. Let
(M4, g , f ) be a 4D shrinking soliton with bounded scalar curvature.

▶ Then | Rm | ≤ CR and hence is bounded.
▶ If R ≥ c > 0 along a topological end E of M4, then either:

▶ g is smoothly asymptotic along E to (S3/Γ) × R, or
▶ For any integral curve γ to ∇f and any ti → ∞, the pointed

sequence (M4, g , γ(ti)) subconverges to S2 × R2 or
(S2 × R2)/Z2.
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Asymptotic geometry of shrinking solitons, II
Munteanu and Wang Dichotomy Conjecture:
For any 4D shrinking soliton, either:

1. R(x) → 0 as x → ∞ or
2. R ≥ c on M4 for some c > 0.

(1) Recall that in the case where R → 0, Munteanu and J. Wang
proved that the shrinker is asymptotically conical (| Rm | has
quadratic decay) and in this case, the shrinker is determined up to
isometry by its asymptotic cone by Kotschwar and L. Wang.
(2) Cylinders are examples with R equal to a positive constant.
There is a new (Kähler) 4D shrinker by Bamler, Cifarelli, Conlon,
and Deruelle on the connected sum of CP2 and S2 × R2, which is
asymptotic at infinity to S2 × R2. Together with the work of
Conlon, Deruelle, and Sun, they completed the classification of
complete noncompact Kähler 4D shrinkers with bounded scalar
curvature. Are there other 4D shrinkers with 0 < c ≤ R ≤ C?
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Estimates for steady Ricci solitons
Recall that B.-L. Chen proved that any complete steady gradient
Ricci soliton must have non-negative scalar curvature.

Recall also that the steady soliton equation is Ric +∇2f = 0.
Assume that g is not Ricci flat. Then we have that R + |∇f |2 = 1
and R > 0. In particular, |∇f | ≤ 1. This implies that

f (o) − d(x , o) ≤ f (x) ≤ f (o) + d(x , o).
P. Lu, B. Yang, and C. showed that if limx→∞ f = −∞, then there
exists a constant c > 0 such that

R(x) ≥ cef (x) ≥ c2e−d(x ,o).

O. Munteanu, C.-J. Sung, and J. Wang improved this estimate by
replacing the hypothesis by f being bounded from above.
The estimate is sharp in the sense that the cigar steady Ricci
soliton satisfies R(x) ≈ ce−d(x ,o) at infinity.
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Estimates for four-dimensional steady Ricci solitons, I

For a non-Ricci-flat steady gradient Ricci soliton, Hamilton proved
that:

R + |∇f |2 = 1.

In particular, we have R ≤ 1.
Michael Freedman, Henry Shin, Yongjia Zhang, and C. showed
that in dimension 4 and for singularity models, one can improve
this as follows.

Theorem
If (M4, g , f ) is a complete non-compact steady gradient Ricci
soliton that is also a singularity model, then there exists a constant
C depending on (M4, g , f ) such that

| Rm |(x) ≤ C .
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Estimates for four-dimensional steady Ricci solitons, II
The best lower bound for the scalar curvature of a steady soliton is
exponentially decaying because of the cigar soliton example.
However, the cigar soliton is not non-collapsed.
Using Bamler’s (2020) theory, P.-Y. Chan, Z. Ma, Y. Zhang,
and C. proved the following.

Theorem
If (M4, g , f ) is a 4-dimensional steady gradient Ricci soliton
singularity model and if g is not Ricci-flat, then there exists a
constant c > 0 such that

R(x) ≥ c
1 + d(x , o) 2 .

Open problem: Can one improve the exponent 2 to to the
exponent 1 in the denominator? Note: 1 is the exponent for the
Bryant soliton and the Appleton solitons on plane bundles over S2.
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The geometry and topology at infinity of steady solitons, I:
Topological ends

Regarding the topology of steady solitons, Munteanu and Wang
proved the following result.

Theorem
Any complete non-compact steady gradient Ricci soliton must
either be connected at infinity (i.e., has exactly one topological
end) or must split as the product of R with a compact Ricci flat
manifold.

In contrast, it is unknown in dimensions at least 4 how many ends
shrinking gradient Ricci solitons can have, even in the special case
of asymptotically conical shrinking solitons.
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The geometry and topology at infinity of steady solitons,
II: Volume growth upper bound

Firstly, Cao and Zhou proved that shrinking gradient Ricci solitons
have at most Euclidean volume growth: There exists a constant Cn
depending only on n such that

Vol Br (o) ≤ Cnrn,

where o is a minimum point of f .
Bamler proved the following:

Theorem
For any singularity model (Mn

∞, g∞(t)) there exists a constant C
such that

Vol Br (o) ≤ Crn.

Question: What lower bounds are there for the volume
growth of Ricci solitons?
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The geometry and topology at infinity of steady solitons,
III: Volume growth lower bound

R. Bamler, P.-Y. Chan, Z. Ma, and Y. Zhang proved the following
sharp volume growth lower bound.

Theorem
For any steady gradient Ricci soliton singularity model, there
exists a constant c > 0 such that

Vol Br (o) ≥ cr
n+1

2 .

This estimate is qualitatively sharp because of the Bryant soliton
example.
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The geometry and topology at infinity of steady solitons,
IV: Tangent flow at infinity

Bamler introduced the notion of tangent flow at infinity for
ancient solutions. This represents an asymptotic limit of the
ancient solution based on the conjugate heat kernel. We may think
of such limits as corresponding to base points about which the heat
kernel is concentrated, and roughly where the volume is largest in
some sense. The tangent flow at infinity is a shrinking soliton.
R. Bamler, Y. Deng, Z. Ma, Y. Zhang, and C. proved the following.

Theorem
Let (M4, g(t)) be a 4D steady Ricci soliton singularity model.
Then its tangent flow at infinity is isometric to either:

1. R4/Γ, where Γ ̸= 1, and in this case (M4, g(t)) must be a
static Ricci flat ALE, or

2. (S3/Γ) × R, S2 × R2, or (S2 × R2)/Z2.
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The geometry and topology at infinity of steady solitons,
IV: Tangent flow at infinity, continued

Furthermore, for 4D steady soliton models they proved:
1. The tangent flow at infinity is unique.
2. If the tangent flow at infinity of the 4D steady soliton

singularity model is (S3/Γ) × R, then (M4, g) is qualitatively
asymptotic to the quotient of the 4D Bryant soliton by some Γ
in the sense that outside of a compact set, the steady soliton
has positive curvature operator and linear curvature decay.

What more can we say about the geometry and topology of
a 4D steady soliton singularity model with an

(S3/Γ) × R tangent flow at infinity?
So far, the only known such examples are the Appleton
cohomogeneity-one steady solitons on plane bundles over S2. Are
there other examples?
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Concluding remarks
In general, one would like to understand the high curvature regions
of 4D Ricci flows. In particular (Bamler), one would like to prove a
“canonical neighborhood” theorem for the high curvature
regions of 4D Ricci flow singular solutions that is sufficient to
enable the formulation of Ricci flow past singularity times with
suitable control on the topology change of the 4-manifold at the
singularity times.
In dimensions 2 and 3, all singularity models are noncollapsed
shrinking or steady Ricci solitons. In higher dimensions, all known
singularity models are Ricci solitons. A few general questions are:
▶ Do there exist non-soliton singularity models?
▶ What can one prove about the geometry and topology of 4D

singularity models? For 4D shrinking & steady soliton models?
Undoubtedly, there will be many important open questions
and unsolved problems for years to come in Ricci flow.
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THANK YOU!
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