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Chapter 2

The Ricci Soliton1048

Equation1049

In this chapter we familiarize ourselves with the Ricci soliton equation. In1050

particular, we see how Ricci solitons are, dynamically, self-similar solutions1051

to the Ricci flow and we consider special examples. We consider the special1052

case of gradient Ricci solitons, which are the main objects of study in this1053

book. By differentiating the Ricci soliton equation, we derive fundamental1054

and useful identities. Regarding the qualitative study of Ricci solitons, we1055

discuss the lower bound for the scalar curvature, completeness of the Ricci1056

soliton vector field, and the uniqueness theorem for compact Ricci solitons.1057

A Ricci soliton structure is a quadruple (Mn, g,X, λ) consisting of a1058

smooth manifoldMn, a Riemannian metric g, a smooth vector field X, and1059

a real constant λ, which together satisfy the equation1060

(2.1) Ric+
1

2
LXg =

λ

2
g

on Mn, where Ric denotes the Ricci tensor of g, and where L denotes the1061

Lie derivative. We include the factor of one half in order to slightly simplify1062

certain fundamental equations which follow.1063

Tracing (2.1), we have1064

(2.2) R+ divX =
nλ

2
,

where R is the scalar curvature of g and divX = tr(∇X) =
∑

i∇iXi denotes1065

the divergence of X. Here, ∇ is the Riemannian covariant derivative.1066

Note that when we write ∇f , where f is a function, this could mean
either (1) the covariant derivative, which is equal to the exterior derivative,

37
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38 2. The Ricci Soliton Equation

∇f = df , or (2) the gradient ∇f , which is the vector field metrically dual
to the 1-form df . In local coordinates,

∇if := (df)i =
∂f

∂xi
and ∇if := (∇f)i = gij∇jf.

The most important class of Ricci solitons, and the primary focus of this1067

book, are those for which X = ∇f for some smooth function f onMn. For1068

these so-called gradient Ricci solitons, equation (2.1) simplifies to1069

(2.3) Ric+∇2f =
λ

2
g,

since L∇fg = 2∇2f (see (2.27) below if you have not seen this formula).1070

Here, ∇2 denotes the Hessian, i.e., the second covariant derivative. This1071

acts on tensors, and when acting on a function f , ∇2f = ∇df . We will1072

often used the abbreviation GRS for gradient Ricci soliton.1073

We will use the notation (Mn, g, f, λ) to denote a gradient Ricci soliton1074

structure. When the expansion constant (or scale) λ is fixed and the1075

potential function f is known or can be determined from the context at1076

hand, we will often simply refer to the underlying manifold (Mn, g) as the1077

Ricci soliton.1078

2.1. Riemannian symmetries and notions of equivalence1079

The groups R+ of positive reals and Diff(Mn) of diffeomorphisms act natu-1080

rally by dilation α·g = αg and pull-back ϕ·g = ϕ∗g on the space Met(Mn) of1081

Riemannian metrics onMn. Via the scaling and diffeomorphism invariances1082

1083

(2.4) Ric(αg) = Ric(g), Ric(ϕ∗g) = ϕ∗Ric(g),

of the Ricci tensor, they act on Ricci solitons (Mn, g,X, λ) as follows:1084

(1) (Metric scaling) If α ∈ R+, then (Mn, αg, α−1X,α−1λ) is a Ricci1085

soliton.1086

(2) (Diffeomorphism invariance) If φ : N n →Mn is a diffeomorphism,1087

then (N n, φ∗g, φ∗X,λ) is a Ricci soliton.1088

Observe also that if K is a Killing vector field, then (Mn, g,X +K,λ)1089

is a Ricci soliton. We leave it as an exercise to check these properties (see1090

Exercise 2.6). Only the sign of the expansion constant λ is of material1091

significance, since, according to property (1), we can adjust the magnitude1092

of a nonzero λ arbitrarily by multiplying g and X by appropriate positive1093

factors. We will see shortly that each Ricci soliton gives rise at least to a1094

locally-defined self-similar solution to the Ricci flow, with the scaling behav-1095

ior determined by whether λ is positive, negative, or zero. This characteristic1096

scaling behavior motivates the following terminology.1097
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Definition 2.1 (Types of Ricci solitons). A Ricci soliton (Mn, g,X, λ) is1098

said to be shrinking if λ > 0, expanding if λ < 0, and steady if λ = 0.1099

For brevity, we will often simply refer to such Ricci solitons as shrinkers,1100

expanders, or steadies. When working within one of these classes of Ricci1101

solitons, we will usually normalize the structure so that λ is 1, −1, or 0 and1102

suppress further mention of it.1 For example, the shrinking GRS equation1103

is1104

(2.5) Ric +∇2f =
1

2
g.

In §2.2 we will see, via the equivalent dynamical version of Ricci solitons,1105

the reasons for the terminologies shrinking, expanding, and steady.1106

We will say that two Ricci soliton structures (Mn
i , gi, Xi, λi), i = 1, 2, are1107

equivalent if λ1 = λ2 and the underlying Riemannian manifolds (Mn
i , gi)1108

are isometric. An isometry ϕ : (Mn
1 , g1)→ (Mn

2 , g2) need not pull back X21109

to X1, however, since1110

(2.6) Ric(g1)−
λ1
2
g1 = ϕ∗

(
Ric(g2)−

λ2
2
g2

)
,

and we have (see Exercise 2.3)

LX1g1 = ϕ∗(LX2g2) = Lϕ∗X2ϕ
∗g2 = Lϕ∗X2g1,

so1111

(2.7) L(ϕ∗X2−X1)g1 = 0;

i.e., the difference ϕ∗X2 − X1 will at least be a Killing vector field on1112

(Mn
1 , g1). In particular, it is not difficult to see that (Mn, g,X1, λ) and1113

(Mn, g,X2, λ) are equivalent if and only if X2−X1 is a Killing vector field.1114

2.2. Ricci solitons and Ricci flow self-similarity1115

The scaling and diffeomorphism invariances of the Ricci tensor (2.4) manifest
themselves in symmetries of the Ricci flow equation. If g(t) is a solution to
the Ricci flow onMn × [c, d], then, for any fixed α > 0 and ϕ ∈ Diff(Mn),

g̃(t) := α(ϕ∗g)(t/α)

is a solution onMn×[αc, αd]. From a geometric perspective, these solutions1116

are essentially the same: For each t, g(t/α) and g̃(t) are isometric but for a1117

homothetical constant. A solution to the Ricci flow which moves exclusively1118

under these symmetries, that is, which has the form1119

(2.8) g(t) = c(t)ϕ∗t ḡ

1Strictly speaking, no normalization is required if λ = 0.
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for some fixed metric ḡ and positive smooth function c(t) and smooth family1120

of diffeomorphisms ϕt, is therefore essentially stationary from a geometric1121

perspective. Such solutions are said to be self-similar.1122

The following proposition demonstrates that Ricci solitons and self-1123

similar solutions are two sides of the same coin: A self-similar solution defines1124

a Ricci soliton structure on each time-slice, and a Ricci soliton structure,1125

gives rise to an (at least locally-defined) self-similar solution.2 The interplay1126

between the two perspectives, one static and one dynamic, is fundamental1127

to the analysis of Ricci solitons. The following is our first formulation; we1128

reformulate it slightly later.1129

Proposition 2.2 (Canonical form, I). Let (Mn, g0) be a Riemannian man-1130

ifold.1131

(a) Suppose that g(t) = c(t)ϕ∗t g0 satisfies the Ricci flow onMn×(α, ω)1132

for some positive smooth function c : (α, ω)→ R and smooth family1133

of diffeomorphisms {ϕt}t∈(α,ω). Then, for each t ∈ (α, ω), there is a1134

vector field X(t) and a scalar λ(t) such that (Mn, g(t), X(t), λ(t))1135

satisfies the Ricci soliton equation (2.1).1136

(b) Suppose that (Mn, g0, X, λ) satisfies the Ricci soliton equation (2.1)1137

for some smooth vector field X and constant λ. Then, for each x0 ∈1138

Mn, there is a neighborhood U of x0, an interval (α, ω) containing1139

0, a smooth family ϕt : U →Mn of injective local diffeomorphisms,1140

and a smooth positive function c : (α, ω) → R such that g(t) =1141

c(t)ϕ∗t g0 solves the Ricci flow on U × (α, ω) with g(0) = g0.1142

Proof. Suppose first that g(t) = c(t)ϕ∗t g0 solves the Ricci flow on Mn ×
(α, ω). Fix a ∈ (α, ω). Differentiating g(t) at a yields

∂

∂t

∣∣∣∣
t=a

g(t) = c′(a)ϕ∗ag0 + c(a)
∂

∂t

∣∣∣∣
t=a

ϕ∗t g0.

Now,1143

∂

∂t

∣∣∣∣
t=a

ϕ∗t g0 =
∂

∂t

∣∣∣∣
t=0

(ϕ−1
a ◦ ϕa+t)∗ϕ∗ag0 = LX(a)ϕ

∗
ag0,

where X(a) is the generator of the family ϕ−1
a ◦ ϕa+t, so, taking λ(a) =1144

−c′(a)/c(a) and using that g(t) solves the Ricci flow, we obtain a solution1145

(Mn, g(a), X(a), λ(a)) to the Ricci soliton equation (2.1).1146

On the other hand, suppose that (Mn, g0, X, λ) satisfies (2.1), and x0 ∈1147

Mn. By the local existence theory for ODEs (see, e.g., Theorem 9.12 of1148

[213]), there are open neighborhoods U , V of x0 with U ⊂ V , ϵ > 0, and1149

2If g is complete, then one obtains a globally defined self-similar solution; see Theorem 2.27
below.
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a smooth family of injective local diffeomorphisms ψs : U → V , s ∈ (−ϵ, ϵ)1150

such that ψ0(x) = x and1151

∂

∂s

∣∣∣∣
s=a

ψs(x) = X(ψa(x))

on U × (−ϵ, ϵ).1152

When λ ̸= 0, define ω = min{ϵ, |λ|} and α = −ω, and, for t ∈ (α, ω), let1153

c(t) = 1− λt, ϕt = ψs(t),

where1154

s(t) = − 1

λ
ln(1− λt).

Then g(t) = c(t)ϕ∗t g0 satisfies g(0) = g0 and

∂g

∂t
= c′(t)ψ∗

s(t)g0 + c(t)s′(t)ψ∗
s(t)LXg0

= −λϕ∗t g0 + ϕ∗t (−2Ric(g0) + λg0)

= −2Ric(g(t))

on U × (α, ω).1155

When λ = 0,1156

∂

∂t
ψ∗
t g0 = ψ∗

tLXg0 = −2ψ∗
tRic(g0) = −2Ric(g(t))

on U × (−ϵ, ϵ) so (b) is verified in this case with c(t) = 1 and ϕt = ψt. □1157

The interval of existence of the solution in the second half of the above1158

proposition is constrained by the maximum domain of definition of the one-1159

parameter family of diffeomorphisms generated by the vector field X. How-1160

ever, as we will see in Section 2.8 below, the vector field X will in most cases1161

of interest generate a globally-defined flow (i.e., X is a complete vector field),1162

and in these settings the correspondence between self-similar solutions and1163

Ricci solitons is symmetric.1164

When the vector field X generates a global flow, the interval of definition1165

for the self-similar solution will be at least as large as that permitted by the1166

Ricci soliton type, namely, (−∞, λ−1) for shrinkers, (−∞,∞) for steadies,1167

and (−λ−1,∞) for expanders. The lifetime of a self-similar solution may1168

extend beyond these intervals. This phenomenon occurs, for example, in1169

the shrinking and expanding self-similar solutions arising from the Gaussian1170

soliton. See (2.9) immediately below.1171

2.3. Special and explicitly defined Ricci solitons1172

In this section we consider some important examples and special classes of1173

Ricci solitons.1174
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2.3.1. The Gaussian soliton.1175

For λ ∈ R, the structure (Rn, gEuc, fGau, λ), where1176

(2.9) gEuc =

n∑
i=1

dxi ⊗ dxi and fGau (x) =
λ

4
|x|2 ,

is called the Gaussian soliton. Thus, Euclidean space can be regarded as1177

a Ricci soliton of shrinking, expanding, or steady type. Observe that the1178

choice of potential function f = fGau is not unique: Any function of the1179

form f (x) = λ
4 |x|

2+ ⟨a, x⟩+ b, where a ∈ Rn and b ∈ R yields an equivalent1180

Ricci soliton structure.1181

The self-similar solution to the Ricci flow associated to the Gaussian1182

soliton is static for any choice of λ. It is instructive to carry out the con-1183

struction in Proposition 2.2 for this simple case explicitly. Integrating the1184

vector field1185

(2.10) ∇f =
λxi

2

∂

∂xi

produces the 1-parameter family of diffeomorphisms ϕ̃t(x) = e
λt
2 x. Follow-1186

ing Proposition 2.2 and taking ϕt = ϕ̃−λ−1 ln(1−λt) when λ ̸= 0 and ϕt = ϕ̃t1187

when λ = 0, we find that1188

(2.11) ϕt(x) = (1− λt)−1/2x,

and hence that the associated solution g(t) is1189

(2.12) g(t) = (1− λt)ϕ∗t gEuc = gEuc.

When λ ̸= 0, the family of diffeomorphisms ϕt – and by extension, the1190

solution provided by Proposition 2.2 – is defined only for t ∈ (−∞, λ−1) or1191

t ∈ (λ−1,∞) depending on whether λ is positive or negative. However, the1192

solution g(t) is well-defined by the rightmost expression for all t ∈ (−∞,∞).1193

2.3.2. Shrinking round spheres.1194

The metrics of constant positive curvature on the sphere Sn are naturally1195

shrinking gradient Ricci solitons, when paired with any constant potential1196

function. If gSn is the round metric of constant sectional curvature equal to1197

one, the rescaled metric1198

(2.13) g = 2 (n− 1) gSn

will satisfy (2.3) with the canonical choice of constant λ = 1. For definite-1199

ness, we will call (Sn, g, n/2) the shrinking round sphere. (The choice of1200

f = n/2 is a convenience that we will explain later.)1201

The associated self-similar solution is the family g(t) = (1− t)g defined1202

for t ∈ (−∞, 1) which simply contracts homothetically as time increases1203
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Figure 2.1. The gradient of the potential function ∇f = xi

2
∂

∂xi for the
Gaussian shrinker. Since ∇f points away from the origin, the pullback
by ϕt expands the metric, which we have to shrink to keep the metric
static.

before vanishing identically at t = 1. For t < 1, the metrics g(t) have radius1204

r(t) =
√

2(n− 1)t and constant sectional curvature sect(t) ≡ 1/2(n− 1)t.1205

Figure 2.2. A shrinking round sphere.

2.3.3. Einstein manifolds.1206

The preceding example can be generalized. To any Einstein manifold1207

(Mn, g), with1208

(2.14) Ric =
λ

2
g,

of constant scalar curvature nλ/2, we may naturally associate a Ricci soliton1209

structure of the form (Mn, g, f, λ) of (2.3) with f = const. In particular,1210

every manifold of constant sectional curvature admits a Ricci soliton struc-1211

ture.1212

If a Ricci soliton (Mn, g,X, λ) is Einstein with constant λ/2, then1213

(2.15) LXg =
λ

2
g − Ric = 0,
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i.e., the vector field X is Killing. Thus it is no loss of generality to assume1214

that such an Einstein soliton is gradient relative to a constant potential1215

f . (However, the example of the Gaussian soliton demonstrates that an1216

Einstein manifold may give rise to Ricci soliton structures of more than one1217

type.)1218

As with the shrinking spheres, the self-similar solutions corresponding1219

to the Einstein solitons evolve purely by scaling. Depending on the sign of1220

λ, the solution g(t) = (1−λt)g associated to a metric g satisfying (2.14) will1221

shrink, expand, or remain fixed for all t in a maximal interval determined1222

by λ; that is, for all t such that 1− λt > 0.1223

While non-Einstein (a.k.a. nontrivial) Ricci solitons will occupy most of1224

our attention, Einstein solitons are nevertheless of fundamental importance1225

in their own right and as building blocks in the construction of other Ricci1226

solitons.1227

2.3.4. Product solitons.1228

If (Mn1
1 , g1) and (Mn2

2 , g2) are Riemannian manifolds, then the Ricci1229

tensor of the product manifold (Mn1
1 ×M

n2
2 , g1 + g2) is itself a product1230

(2.16) Ric(g1 + g2) = Ric(g1) + Ric(g2).

Here and below, for tensors αi onMni
i , i = 1, 2, we will write1231

(2.17) α1 + α2 := p∗1(α1) + p∗2(α2) ,

where pi :Mn1
1 ×M

n2
2 →M

ni
i denotes the projection map. It follows that1232

if (Mn1
1 , g1, f1, λ) and (Mn2

2 , g2, , f2, λ) are gradient Ricci soliton structures1233

onMn1
1 andMn2

2 , respectively, then1234

(2.18) (Mn1
1 ×M

n2
2 , g1 + g2, f1 + f2, λ)

is a gradient Ricci soliton structure onMn1
1 ×M

n2
2 . More generally, given1235

two Ricci soliton structures (Mni
i , gi, Xi, λ) onMni

i , i = 1, 2, we have that1236

(Mn1
1 ×M

n2
2 , g1+g2, (X1, X2), λ) is a Ricci soliton structure onMn1

1 ×M
n2
2 .1237

For instance, combining the examples in (1) and (2) and taking the prod-1238

uct of the Gaussian shrinker with the shrinking round sphere of dimension1239

k ≥ 2, we obtain the round-cylindrical shrinkers
(
Sk × Rn−k, gcyl, fcyl, 1

)
,1240

n ≥ 3, where1241

gcyl := 2 (k − 1) gSk + gEuc and fcyl (θ, z) :=
|z|2

4
+
k

2
.

Here, |z|2 =
∑n−k

i=1 (z
i)2, where z = (z1, . . . , zn−k) ∈ Rn−k and θ ∈ Sk.1242

The shrinking cylindrical solutions that these Ricci solitons define are of1243

paramount importance in the analysis of singularities of the Ricci flow.1244

1245
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Figure 2.3. Top: The shrinker (Sn−1 ×R1, gcyl, fcyl). The Sn−1 factor
is normalized so that its Ricci curvatures are equal to 1

2
. Bottom: The

same shrinker at half the scale.3 The shading is to indicate the homo-
thetic correspondence. Note however that this is not the correspondence
under Ricci flow without diffeomorphism pullback, which shrinks the
spheres but not the line.

2.3.5. Quotient solitons.1246

We will say that a subgroup Γ ⊂ Isom(Mn, g) preserves the Ricci1247

soliton structure (Mn, g,X, λ) if γ∗(X) = X for all γ ∈ Γ, and preserves the1248

gradient Ricci soliton structure (Mn, g, f, λ) if furthermore f ◦ γ = f for all1249

γ ∈ Γ. If Γ is discrete and acts freely and properly discontinuously onMn,1250

then g and X (respectively, f) descend uniquely to smooth representatives1251

gquo and Xquo (respectively, fquo) on the quotient manifold Mn/Γ which1252

define a Ricci soliton structure there.1253

Example 2.3. The involution (θ, r) 7→ (−θ,−r) on Sn−1 × R defines a Z2-1254

quotient of the round-cylindrical shrinker
(
Sn−1 × R, gcyl, fcyl

)
. Here, the1255

underlying manifold is diffeomorphic to a nontrivial real line bundle over1256

RPn−1.1257

The construction in Example 2.3 can be rephrased in the language of1258

covering spaces. Given a covering space π :
∼Mn →Mn and a Ricci soliton1259

structure (Mn, g,X, λ) on Mn, defining g̃ = π∗g and X̃ = π∗X yields a1260

Ricci soliton structure on the cover
∼M n. If π1(

∼M n) = {e}, we call this1261

structure the universal covering soliton.1262

2.3.6. Non-gradient solitons.1263

The examples we have considered to this point have all been gradient1264

Ricci solitons. They are the most important kind of Ricci soliton from1265

the perspective of singularity analysis, and all examples which have arisen1266

organically thus as a byproduct of this analysis have proven to be gradient.1267

For example, according to [242, 247], any complete shrinking Ricci soliton1268

(Mn, g,X, 1) of bounded curvature is gradient.1269

3That is, the metric of the bottom cylinder is, up to isometry, equal to 1
4
times the metric of

the top cylinder.
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Nevertheless, there are several constructions of non-gradient Ricci soli-1270

tons in the literature and there is no reason to suspect that they are partic-1271

ularly uncommon. Before we give a nontrivial example, let us first describe1272

a superficial means of creating a non-gradient Ricci solitons from gradient1273

structures. If (Mn, g, f, λ) is a gradient Ricci soliton and (Mn, g) admits a1274

nontrivial (i.e., not identically zero) Killing vector field K, then adding K1275

to ∇f yields another Ricci soliton structure (Mn, g,∇f +K,λ) which will1276

be non-gradient provided K is not itself the gradient of a smooth function.1277

Of course this new structure is equivalent to the original one, and thus is in1278

a sense “secretly” a gradient Ricci soliton.1279

The following explicit example of a “true” non-gradient Ricci soliton is1280

due to Topping and Yin [274].1281

Example 2.4. The complete Riemannian metric1282

(2.19) g =
2

1 + y2
(dx2 + dy2),

together with the complete vector field1283

(2.20) X = −x ∂
∂x
− y ∂

∂y

generated by homothetical scaling comprises a complete non-gradient ex-1284

panding Ricci soliton structure (R2, g,X,−1) on R2. A short computation1285

shows that the scalar curvature of g is given by (see Figure 2.4)1286

(2.21) R(x, y) =
1− y2

1 + y2
.

Indeed, this follows from (1.20):1287

(2.22) ReugE = −e−u∆u,

with u = ln
(

2
1+y2

)
, and where ∆ is the Euclidean Laplacian. We also1288

note that the geometry of (R2, g) resembles that of hyperbolic space (with1289

constant sectional curvature −1
2) near spatial infinity.1290

1

y
1-1

Figure 2.4. The scalar curvature as a function of y: R(·, y) = 1−y2

1+y2 .

That (R2, g,X,−1) is not equivalent to a gradient Ricci soliton structure1291

can be seen by first observing that the Killing vector fields of g are precisely1292

the constant multiples of the vector ∂
∂x .1293
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As we will see below, for any gradient Ricci soliton (M2, g, f, λ) on an1294

oriented Riemannian surface, the vector J(∇f) will be Killing (see Lemma1295

3.1). Here, J : TM→ TM is the almost complex structure defined by the1296

conformal class of g and the orientation on M2. So J is counterclockwise1297

orientation by 90 degrees and J2 = −idTM. But for no c ∈ R is J
(
X+ c ∂

∂x

)
1298

a constant multiple of ∂
∂x .1299

Other nontrivial examples of non-gradient expanding Ricci solitons can1300

be found in Lott [220] and Baird and Danielo [12, 13].1301

2.4. The gradient Ricci soliton equation1302

In this section we consider basic properties of gradient Ricci solitons in1303

all dimensions. The basic definitions and derived equations were given by1304

Hamilton in various papers, especially [174, 175, 178].1305

2.4.1. Definitions.1306

Recall from (2.3) that a gradient Ricci soliton is a quadruple (Mn, g, f, λ),1307

where λ ∈ R, satisfying1308

(2.23) Ric+∇2f =
λ

2
g,

where by Definition 2.1, the expansion constant λ > 0, = 0, and < 0 (e.g.,1309

λ = 1, 0, and −1) corresponds to being a shrinking, steady, and expanding1310

gradient Ricci soliton, respectively.1311

Recall that in all cases, f is called the potential function. Evident in1312

the above equations is that there should be some relationships between the1313

geometry of g and the analysis of f . Techniques from Ricci flow also prove1314

to be useful. These themes are prevalent throughout this book.1315

Recall that the Lie derivative of a k-tensor T on a differentiable manifold
Mn satisfies

(LXT ) (Y1, . . . , Yk) = X (T (Y1, . . . , Yk))−
k∑
i=1

T (Y1, . . . , [X,Yi] , . . . , Yk) ,

(2.24)

where X,Y1, . . . , Yk are vector fields. In the case where we are on a Rie-
mannian manifold (Mn, g), we may re-express this formula in terms of the
covariant derivative of g as

(LXT ) (Y1, . . . , Yk) = (∇XT ) (Y1, . . . , Yk) +
k∑
i=1

T (Y1, . . . ,∇YiX, . . . , Yk) .

(2.25)
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In particular, if T is a 2-tensor, then in local coordinates we have41316

(2.26) (LXT )ij = (∇XT )ij +∇iXkTkj +∇jXkTik.

Here and throughout the book we use the Einstein summation convention1317

and we do not bother to raise indices. Notably, (2.24) yields1318

(2.27) L∇fg = 2∇2f

and we may rewrite the gradient Ricci soliton equation (2.23) in terms of1319

the Lie derivative as1320

(2.28) −2Ric = L∇fg − λg.

The lhs of this equation is the velocity tensor for Hamilton’sRicci flow.1321

Equation (2.28) is an underdetermined system of PDEs for the pair1322

(g, f): there are n(n+1)
2 equations for n(n+1)

2 +1 unknowns. The Lie derivative1323

term represents the infinitesimal action of the diffeomorphism group on the1324

metric by pullback. A consequence of this is the time-dependent Ricci flow1325

form of a gradient Ricci soliton discussed in both Proposition 2.2.1326

As we shall see, the analysis of (2.28) generally uses techniques from1327

elliptic and parabolic partial differential equations, from the comparison1328

geometry of Ricci curvature, and from Ricci flow. Although we cannot de-1329

couple the two quantities g and f , it is often useful to consider the gradient1330

Ricci soliton equation from the point of view of one quantity or the other.1331

Recall that we have the more general notion of Ricci soliton (Mn, g,X, λ),1332

where X is a vector field, satisfying1333

(2.29) 2Ric+LXg = λg.

This is also an underdetermined system. In local coordinates,1334

(2.30) 2Rij +∇iXj +∇jXi = λgij .

Recall that tracing this yields (2.2):

R+ divX =
nλ

2
.

Observe that ifMn is closed, then by integrating this and using the diver-1335

gence theorem, we obtain that the average scalar curvature satisfies1336

(2.31) Ravg :=

∫
MRdµ

Vol(g)
=
nλ

2
,

where dµ is the volume form of g and Vol(g) is the volume of (Mn, g).1337

4For the reader unfamiliar with local coordinate calculations, Eisenhart’s book [143] is an
excellent classical reference.
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2.5. Product and rotationally symmetric solitons1338

In this section we consider product structures in more detail and the extent1339

of uniqueness of the potential function f of gradient Ricci soliton structures1340

(Mn, g, f) for the Riemannian metric g fixed. We also state the uniqueness1341

theorem for rotationally symmetric steady gradient Ricci solitons and the1342

nonexistence theorem for rotationally symmetric shrinking gradient Ricci1343

solitons.1344

2.5.1. Metric products are soliton products.1345

If a gradient Ricci soliton is a product metrically, then it is a product1346

as a gradient Ricci soliton.1347

Lemma 2.5. Suppose that (Mn, g, f, λ) is a gradient Ricci soliton and that1348

(Mn, g) is isometric to a Riemannian product (Mn1
1 , g1)× (Mn2

2 , g2). Then1349

for any x2 ∈ Mn2
2 we have that (Mn1

1 , g1, f1, λ) is a gradient Ricci soliton,1350

where f1 :Mn1
1 → R is the restriction of f toMn1

1 × {x2}. Of course, the1351

same is true for the indices 1 and 2 switched.1352

Proof. Since g = g1 + g2, we have for X,Y ∈ TM1
∼= T (Mn1

1 × {x2}) ⊂
TM, (

∇2
gf
)
(X,Y ) = X (Y f)−

〈
∇gXY,∇f

〉
g

= X (Y f)−
〈
∇g1XY,∇f1

〉
g1

=
(
∇2
g1f1

)
(X,Y )

because ∇gXY = ∇g1XY is tangential to Mn1
1 × {x2}. Therefore, taking the1353

components of Ricg +∇2
gf = λ

2g in theMn1
1 directions yields1354

Ricg1 +∇2
g1f1 =

λ

2
g1. □

2.5.2. Uniqueness and non-uniqueness of the potential function.1355

Regarding the uniqueness of the potential function of a gradient Ricci1356

soliton with a given metric and a given expansion factor, we have the fol-1357

lowing.1358

Proposition 2.6. Suppose that (Mn, g, λ), with either f1 or f2 as its po-1359

tential function, is a gradient Ricci soliton. Then:1360

(1) f1 − f2 is a constant or1361

(2) (Mn, g) is isometric to (R, ds2)× (N n−1, h), where (N n−1, h) is iso-1362

metric to each level set {f1 − f2 = c}, for c ∈ R.1363

Moreover, in the second case, f1 − f2 is linear on the R factor; that is,1364

(2.32) f2(s, x) = f1(s, x) + as+ b for s ∈ R, x ∈ N n−1,
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where a, b ∈ R.1365

Proof. Define F :Mn → R by F := f1−f2. Then∇2F = 0; i.e., L∇F g = 0.1366

Assume that F is not a constant. Then |∇F | = a, where a is a positive1367

constant. Let φt, t ∈ R, be the 1-parameter group of isometries of (Mn, g)1368

generated by ∇F . We have F ◦ φt = F + a2t. Let1369

(2.33) Σc := {F = c},
which is a smooth hypersurface with unit normal ν = ∇F

|∇F | for each c ∈ R.1370

The second fundamental form II of Σc vanishes because1371

(2.34) II(X,Y ) := ⟨∇Xν, Y ⟩ =
〈
∇X
∇F
|∇F |

, Y

〉
=
∇2F (X,Y )

|∇F |
= 0

for X,Y ∈ TΣc. Moreover, since L∇F g = 0, φt maps Σc isometrically1372

onto Σc+a2t. Hence (Mn, g) is isometric to (R×N n−1, a−2dF 2 + h), where1373

(N n−1, h) is isometric to each level set {F = c}. The proposition follows. □1374

Σc

ν

X

Y

Figure 2.5. A level surface Σc of f , a unit normal vector ν to Σc, and
tangent vectors X,Y to Σc.

Remark 2.7. To see the non-uniqueness of the potential function in the1375

splitting case, consider the product of an (n− 1)-dimensional gradient Ricci1376

soliton (Mn, g, f, λ) with (R, ds2, fa, λ), where fa(s) = λ
4 (s−a)

2 and a ∈ R.1377

Corollary 2.8. If (Mn, g, f, λ) is a gradient Ricci soliton, where (Mn, g)1378

is equal (isometric) to (Mn1
1 , g1)× (Mn2

2 , g2), then there are fi :Mni
i → R1379

such that (Mni
i , gi, fi, λ) are gradient Ricci solitons and where f = f1 + f21380

or (Mn, g) splits off an R factor and f − f1 + f2 is linear on that R factor.1381

Proof. Define fi :Mni
i → R by Lemma 2.5, so that the (Mni

i , gi, fi, λ) are1382

gradient Ricci solitons. By Proposition 2.6, if (Mn, g) does not split off an1383

R factor, then the difference of f and f1 + f2 is a constant function onMn
1384

so we may add a constant to say f1 to make them equal. □1385

If the expansion constants of the gradient Ricci solitons are different,1386

then we have the following.1387
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Proposition 2.9 (GRS that are metrically the same but have different1388

expansion constants). Suppose that (Mn, g), with either (f1, λ1) or (f2, λ2),1389

is a gradient Ricci soliton, where λ1 ̸= λ2. Then (Mn, g, fi, λi), for i = 1, 2,1390

are both Gaussian solitons.1391

Proof. Without loss of generality, we may assume that λ1 > λ2. Define1392

ψ = f1 − f2. Then1393

(2.35) ∇2ψ = cg,

where c := λ1−λ2
2 > 0. Choose any p ∈ Mn. Let γ : [0, L] → Mn be1394

a unit speed geodesic emanating from p and let ψ(s) := ψ(γ(s)). Then1395

ψ′(0) ≥ −|∇ψ|(p). Hence ψ′′(s) = c implies that1396

ψ(s) ≥ c

2
s2 − |∇ψ|(p)s+ ψ(p) ≥ − 1

2c
|∇ψ|2(p) + ψ(p).

This implies that ψ attains its minimum value, call it o ∈ Mn, which is1397

unique since ψ is strictly convex. Without loss of generality, we may assume1398

that this minimum value is equal to 0. Hence ψ > 0 onMn \ {o}.1399

Now, (2.35) implies that

∇|∇ψ|2 = 2∇2ψ(∇ψ) = 2cg(∇ψ) = 2c∇ψ.

Thus, |∇ψ|2 = 2cψ + C, where C is a constant. Since the minimum of ψ is1400

equal to 0, we have that C = 0, so that1401

(2.36) |∇ψ|2 = 2cψ.

Define ρ :=
√
ψ. Then1402

(2.37) |∇ρ|2 = c

2

on Mn \ {o}. Moreover, ∇(ρ2) = ∇ψ is a complete vector field which
generates a 1-parameter group {φt}t∈R of homotheties of g. We have that

∇∇ρ(∇ρ) =
1

2
∇|∇ρ|2 = 0,

where ∇ρ denotes the gradient of ρ, so that the integral curves to ∇ρ are
geodesics. By Morse theory we have that Σt := ρ−1 (t) is diffeomorphic to
Sn−1 for all t ∈ (0,∞). Since |∇ρ| = 1, each homothety φt of g maps level
sets of ρ to level sets of ρ. Hence g may be written as the warped product

g = dρ2 + ρ2g̃, where g̃ = g|Σ1
.

Since g is smooth at o, where ρ = 0, we have that (Σ1, g̃) must be isometric1403

to the unit (n− 1)-sphere. Since
⋃

t∈(0,∞)

Σt = Mn \ {o}, we conclude that1404

(Mn, g) is isometric to Euclidean space. The proposition follows. □1405



D
RA
FT

52 2. The Ricci Soliton Equation

Remark 2.10. Compare this to Obata’s theorem (see [245]), which says1406

that if (Mn, g) is a complete Riemannian manifold with a nonconstant func-1407

tion f satisfying ∇2f = −fg, then (Mn, g) is isometric to the unit n-sphere.1408

Note that from the equality case of Theorem 2.14 below, we have that a1409

flat shrinking gradient Ricci soliton must be the Gaussian shrinking gradient1410

Ricci soliton.1411

2.5.3. Uniqueness of rotationally symmetric gradient Ricci soliton.1412

1413

We have the following uniqueness result, due to Bryant [54] in the steady1414

case and due to Kotschwar [201] in the shrinking case.1415

Theorem 2.11.1416

(1) Any complete rotationally symmetric steady gradient Ricci soliton1417

must be flat or the Bryant soliton.1418

(2) Any complete rotationally symmetric shrinking gradient Ricci soli-1419

ton must be the Gaussian shrinking gradient Ricci soliton on Rn,1420

the round cylinder shrinker on Sn−1×R, or the round sphere shrinker1421

on Sn.1422

Assuming nonflatness, the idea of the proof is to first show that the1423

potential function is rotationally symmetric (see Exercise 6.2 below). The1424

gradient Ricci soliton equation is a nonlinear second-order ODE, which may1425

be then reduced to a first-order system of ODEs. An ODEs analysis using1426

the metric’s smoothness at any finite end (removable singularity) and com-1427

pleteness at any infinite end yields the classification. A detailed proof of1428

Theorem 2.11(1), with calculations related to the proof of Theorem 2.11(2),1429

will be given in Chapter 6.1430

Remark 2.12. For an exposition of Bryant’s work on rotationally sym-1431

metric expanding gradient Ricci soliton, see §5 of Chapter 1 in [101]. We1432

summarize the results in §7.1.2 of this book.1433

2.6. Fundamental identities: Differentiating the soliton1434

equation1435

In this section we present basic identities satisfied by gradient Ricci solitons.1436

These identities are fundamental to the study of gradient Ricci solitons.1437

2.6.1. Trace and divergence of the gradient Ricci soliton equation.1438

1439
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Let (Mn, g, f, λ) be a gradient Ricci soliton. By tracing the gradient1440

Ricci soliton equation (2.23), we obtain1441

(2.38) R+∆f =
nλ

2
.

On the other hand, taking the divergence of (2.23) while applying the fol-1442

lowing contracted second Bianchi identity (1.60) yields1443

1

2
dR+∆(df) = 0.

By the commutator formula (1.52), for any function u and by (2.38), we1444

have1445

0 =
1

2
dR+ d(∆f) + Ric (∇f) = −1

2
dR+Ric (∇f) .

We write this as the following basic equation:1446

(2.39) 2Ric (∇f) = ∇R.

A useful consequence of this is1447

(2.40) ⟨∇f,∇R⟩ = 2Ric(∇f,∇f).

2.6.2. A fundamental identity relating R and f .1448

Now by (2.23), for any vector field V ,

V (|df |2) = 2 ⟨∇V df, df⟩

= 2

〈
−Ric (V ) +

λ

2
g (V ) , df

〉
= (−2Ric (∇f) + λdf) (V ) ,

so that1449

(2.41) ∇ |∇f |2 = −2Ric (∇f) + λ∇f.

Combining this with (2.39) yields1450

(2.42) ∇(R+ |∇f |2 − λf) = 0.

SinceMn is connected, we conclude that1451

(2.43) R+ |∇f |2 − λf = C,

where C is a constant. This equation is used in a fundamental way to1452

understand gradient Ricci solitons. The above equations were obtained by1453

Hamilton.1454

If λ = ±1 (shrinking or expanding gradient Ricci soliton), then by adding1455

a constant to the potential function f we may assume that C = 0, so that1456

(2.44) R+ |∇f |2 = λf.
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If λ = 0 (steady gradient Ricci soliton) and g is not Ricci flat, then by1457

scaling the metric we may take C = 1, so that1458

(2.45) R+ |∇f |2 = 1.

In other words, we may choose C = 1− |λ|. In these cases we say that the1459

gradient Ricci soliton is a normalized gradient Ricci soliton. Through-1460

out this book, unless otherwise indicated we shall always assume that we1461

are on a normalized gradient Ricci soliton.1462

2.6.3. The f-scalar curvature and f-Ricci tensor.1463

Define the f-scalar curvature to be1464

(2.46) Rf := R+ 2∆f − |∇f |2 .

We define the f-Ricci tensor, a.k.a., the Bakry–Emery tensor, by

Ricf = Ric+∇2f.

Then the gradient Ricci soliton equation is1465

(2.47) Ricf =
λ

2
g.

Remark 2.13. From (2.38), (2.44), and (2.45), on a (normalized) gradient1466

Ricci soliton we have1467

(2.48) Rf = −λf + nλ− 1 + |λ|.

2.6.4. f-Laplacian-type equations.1468

Define the f-Laplacian by1469

(2.49) ∆f := ∆−∇f · ∇.

This natural elliptic operator is prevalent in computations regarding gradient1470

Ricci solitons. For any functions A,B :Mn → R, provided we can integrate1471

by parts (e.g., if A and B have compact support), we have:1472

(2.50)

∫
M
A∆fB e

−fdµ = −
∫
M
⟨∇A,∇B⟩ e−fdµ =

∫
M
B∆fAe

−fdµ.

That is, the operator ∆f is formally self-adjoint on L2(e−fdµ). Moreover,1473

for any φ :Mn → R we have that1474

(2.51)

(
∆f −

1

4
Rf

)
φ = ef/2

(
∆− 1

4
R

)
(e−f/2φ).

By (2.44) and (2.45), and by their differences with (2.38), we obtain the1475

following for each of the three types of normalized gradient Ricci solitons.1476

(1) For a shrinking gradient Ricci soliton, we have1477

(2.52) R+ |∇f |2 = f so that R ≤ f,
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and1478

(2.53) ∆ff =
n

2
− f.

Hence f − n
2 is an eigenfunction of −∆f with eigenvalue 1.1479

(2) For a non-Ricci-flat steady gradient Ricci soliton, we have1480

(2.54) R+ |∇f |2 = 1, so that R ≤ 1,

and1481

(2.55) ∆ff = −1.

(3) For an expanding gradient Ricci soliton, we have1482

(2.56) R+ |∇f |2 = −f, so that R ≤ −f,

and1483

(2.57) ∆ff = f − n

2
.

By taking the divergence of (2.39) and then applying (1.60) and (2.23),
we obtain

∆R = 2div (Ric) (∇f) + 2
〈
Ric,∇2f

〉
(2.58)

= ⟨∇R,∇f⟩ − 2

〈
Ric,Ric−λ

2
g

〉
.

That is,1484

(2.59) ∆fR = −2 |Ric|2 + λR.

Thus1485

(2.60) ∆fR ≤ −
2

n
R2 + λR.

It is convenient to define the f-divergence1486

(2.61) divf (T ) = div(T )−tr 1,2 (∇f ⊗ T ) = (div−ι∇f ) (T ) = ef div(e−fT )

acting on tensors, where tra,b denotes the trace over the ath and bth com-1487

ponents. For example,1488

∆fu = divf (du) = divf (∇u).
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2.7. Sharp lower bounds for the scalar curvature1489

2.7.1. Statements and consequences of the lower bounds.1490

We have seen that every Einstein manifold admits at least one Ricci1491

soliton structure, and that these are precisely the Ricci soliton structures1492

of constant scalar curvature. The following theorem shows that the scalar1493

curvature of any complete Ricci soliton is bounded from below by a sharp1494

constant. This follows in the gradient case from the work of B.-L. Chen [86]1495

on ancient solutions and from the work of Z.-H. Zhang [299] on GRS. The1496

equality case when λ > 0 is due to Pigola, Rimoldi, and Setti [254].1497

Theorem 2.14 (Sharp scalar curvature lower bounds for Ricci solitons). If1498

(Mn, g,X, λ) is a complete Ricci soliton, then:1499

(a) R ≥ 0 if λ ≥ 0.1500

(b) R ≥ λn
2 if λ < 0.1501

Moreover, if equality holds at any point ofMn, then (Mn, g) is Einstein. If1502

λ > 0 and the shrinker is gradient, that is, X = ∇f for some function f ,1503

with R = 0 at some point, then (Mn, g, f) is a Gaussian shrinker.1504

Before proving this, we observe that Theorem 2.14 yields a measure of1505

control of the potential function:1506

Corollary 2.15 (Potential function estimates). Let (Mn, g, f, λ) be a GRS1507

and let p ∈Mn.1508

(1) On a shrinking GRS (λ = 1),1509

(2.62)

|∇f |2 ≤ f, R ≤ f, ∆f ≤ n

2
, and

√
f (x) ≤

√
f(p) +

1

2
d(x, p),

where d(x, p) denotes the Riemannian distance from x to p with1510

respect to the metric g. At a minimum point5 o ∈Mn of f we have1511

0 ≤ R(o) = f(o) ≤ n
2 and1512

(2.63) f (x) ≤ 1

4

(
d(x, o) +

√
2n
)2
.

(2) On a steady GRS (λ = 0),1513

(2.64) |∇f |2 ≤ 1, R ≤ 1, ∆f ≤ 0, and |f(x)− f(p)| ≤ d(x, p).
(3) On an expanding GRS (λ = −1),1514

(2.65)

|∇f |2 ≤ n

2
− f, ∆f ≤ 0, and

√
n

2
− f (x) ≤

√
n

2
− f(p) + 1

2
d(x, p).

5We will show in Theorem 4.3 below that the infimum of f over Mn is attained at some
point.
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In particular, f ≤ n
2 .1515

Proof of Corollary 2.15. The upper bounds for ∆f follow from (2.38)1516

and Theorem 2.14. The upper bounds for R follow from (2.44) and (2.45).1517

The upper bounds for |∇f |2 follow from (2.44), (2.45), and Theorem 2.14.1518

By integrating the bounds for |∇f | along minimal geodesics, we obtain the1519

inequalities for f and its square root.1520

In the case of a shrinking GRS, by (2.53), at a minimum point o of f we1521

have f(o)−R(o) = |∇f |2(o) = 0 and1522

(2.66) 0 ≤ ∆ff(o) =
n

2
− f(o) .

Thus 0 ≤ f(o) = R(o) ≤ n
2 . Now, integrating the inequality |∇(2

√
f )| ≤ 1

from Theorem 2.14 yields

2
√
f(x) ≤ 2

√
f(o) + d(x, o) ≤

√
2n+ d(x, o) ,

which in turn implies (2.63). □1523

2.7.2. Laplacian comparison on Riemannian manifolds.1524

A basic tool that we will use to prove Theorem 2.14 is the Laplacian1525

comparison theorem for the distance function on Riemannian manifolds,1526

which we recall in this subsection.1527

Let (Mn, g) be a Riemannian manifold. Recall that the length of a path1528

γ : [a, b]→Mn is defined by1529

(2.67) L(γ) :=

∫ b

a
|γ′(r)|dr.

The distance function d :Mn ×Mn → [0,∞) is defined as an infimum of1530

lengths:1531

(2.68) d(x, y) = inf
γ
L(γ),

where the infimum is taken over all paths joining x and y.1532

Let (Mn, g) be a Riemannian manifold. Let γv : [0, L] → Mn be a1533

1-parameter family of piecewise smooth paths such that γ := γ0 (but not1534

necessarily γv for v ̸= 0) is parametrized by arc length. Then the first1535

variation of arc length formula says (see Exercise 2.22)1536

(2.69)
d

dv

∣∣∣∣
v=0

L (γv) = −
∫ L

0

〈
V (r),∇γ′(r)γ′(r)

〉
dr +

〈
V (r), γ′(r)

〉∣∣L
r=0

,

where V (r) := ∂
∂v

∣∣
v=0

γv(r). In particular, by considering the case where1537

both V (0) = 0 and V (L) = 0, we see that γ is a critical point of the length1538

functional L if and only if ∇γ′(r)γ′(r) ≡ 0; i.e., γ is a geodesic.1539
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The second variation of arc length formula tells us the following (see1540

(1.17) in Cheeger and Ebin’s book [84]); cf. Exercise 2.23.1541

Proposition 2.16. Suppose that p := γv(0) is independent of v and that
γ = γ0 is a unit speed geodesic. Then the second variation of the length L
is

d2

dv2

∣∣∣∣
v=0

L (γv) =

∫ L

0

(∣∣∣(∇γ′(r)V )⊥
∣∣∣2 − 〈Rm(V, γ′(r))γ′(r), V

〉)
dr(2.70)

+

〈
∇V

(
∂

∂v
γv

)
, γ′(L)

〉
,

where (∇γ′V )⊥ := ∇γ′V − ⟨∇γ′V, γ′⟩γ′ is the projection of ∇γ′V onto the1542

hyperplane (γ′)⊥ = {V ∈ TM : ⟨V, γ′⟩ = 0}.1543

We shall also use the notation δ2V L(γ) := ∂2

∂v2

∣∣∣
v=0

L (γv). Since the dis-1544

tance function is only Lipschitz continuous, when considering its Laplacian1545

we shall use the following.1546

Definition 2.17. Let φ :Mn → R be continuous in a neighborhood of a1547

point x. We say that ∆φ (x) ≤ A in the barrier sense if for any ε > 01548

there exists a C2 function ψ ≥ φ defined in a neighborhood of x such that1549

ψ (x) = φ (x) and ∆ψ (x) ≤ A+ ε.1550

We say that ∆φ (x) ≤ A in the strong barrier sense if there exists a1551

C2 function ψ ≥ φ defined in a neighborhood of x such that ψ (x) = φ (x)1552

and ∆ψ (x) ≤ A. We have the analogous definitions for the operator ∆f .1553

Fix p ∈ Mn and denote r(x) := d(x, p). Let rx := r(x). By applying1554

the second variation of arc length formula, we obtain the following upper1555

bound for the Laplacian of the distance function (cf. Li’s book [214]).1556

Proposition 2.18. Let x ̸= p, let γ : [0, rx]→Mn be a unit speed minimal1557

geodesic joining p to x, and let ζ : [0, rx] → R be a continuous piecewise1558

C∞ function satisfying ζ (0) = 0 and ζ (rx) = 1. Then in the strong barrier1559

sense we have1560

(2.71) ∆r(x) ≤
∫ rx

0

(
(n− 1)

(
ζ ′
)2

(r)− ζ2 (r)Ric
(
γ′(r), γ′(r)

))
dr.

In particular, the above inequality holds in the classical sense if x is not in1561

the cut locus of p.1562

Proof. Fix p ∈ Mn and let x ̸= p. Let ε ∈ (0, injg(x)), where injg(x)1563

denotes the injectivity radius of g at x. We extend γ to an n-parameter1564

family of paths by defining γV : [0, rx]→Mn for V ∈ Bε(0) ⊂ TxM by1565

γV (r) := expγ(r)(ζ (r)V (r)),
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where V (r) ∈ Tγ(r)M is the parallel translation of V along γ, and where1566

ζ : [0, rx]→ R satisfies ζ (0) = 0 and ζ (rx) = 1. Note that V (rx) = V .1567

x

p

γV

γ

V
expx(V )

Bε(x)

Figure 2.6. A path γV , where V ∈ Bε(0) ⊂ TxM. γ is a minimal
geodesic, but γV is not necessarily a geodesic.

The family of paths γV have the properties that γ0(r) = γ(r), γV (0) = p,1568

γV (rx) = expx(V ), and1569

∂

∂t

∣∣∣∣
t=0

γtV (r) = ζ (r)V (r) .

We have

L
(
γV
)
≥ r(expx (V )),(2.72a)

L
(
γ0
)
= rx.(2.72b)

Since ε < injg(x), expx : Bε(0)→ Bε (x) is a diffeomorphism. Let y ∈ Bε(x).1570

Note that exp−1
x (y) ∈ Bε(0) ⊂ TxM. So (2.72) implies that the C∞ function1571

φ : Bε (x)→ R defined by1572

φ (y) = L(γexp
−1
x (y))

is an upper barrier for r at x; that is, φ (y) ≥ r(y) for y ∈ Bε (x) and1573

φ (x) = rx. Thus, in the strong barrier sense of Definition 2.17, we have1574

(2.73) ∆r(x) ≤ ∆φ(x).

Let the vectors {e1, . . . , en−1} complete the tangent vector γ′ (rx) to an
orthonormal basis of TxM. Then its parallel translation along γ, written as
{e1 (r) , . . . , en−1 (r) , γ

′(r)}, forms an orthonormal basis of Tγ(r)M for each
r ∈ [0, rx]. By (2.70), we have

∆φ(x) =

n−1∑
i=1

∂2

∂t2

∣∣∣∣
t=0

φ (expx (tei)) +
∂2

∂t2

∣∣∣∣
t=0

φ
(
expx

(
tγ′ (rx)

))
=

n−1∑
i=1

∂2

∂t2

∣∣∣∣
t=0

L
(
γtei
)

=

n−1∑
i=1

∫ rx

0

((
ζ ′
)2

(r)− ζ2 (r)
〈
Rm(ei, γ

′(r))γ′(r), ei
〉)
dr,
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where we used φ (expx (tγ
′ (rx))) = rx + t and ⟨∇eiei, γ′(rx)⟩ = 0 (since1575

γtei(rx) = expx(tei) is a geodesic). The proposition follows. □1576

The proposition leads to the question: What are good or optimal choices1577

for ζ(r) in (2.71)? By taking ζ(r) = r
rx
, a choice which for the case of1578

Euclidean space corresponds to variations comprised of straight lines, we1579

obtain the Laplacian comparison theorem:1580

Corollary 2.19. If (Mn, g) is a complete Riemannian manifold with Ric ≥1581

0, then1582

(2.74) ∆r(x) ≤ n− 1

r(x)

in the strong barrier sense.1583

On the other hand, it is useful to consider a choice of ζ(r) which corre-1584

sponds to a frame of parallel unit vector fields except near the ends of the1585

geodesic, where the variations taper down. Now let x ∈Mn \B2 (p) and let1586

γ : [0, r (x)]→Mn be a unit speed minimal geodesic joining p to x. Define1587

ζ : [0, r (x)]→ [0, 1] to be the piecewise linear function1588

(2.75) ζ (r) =


r if 0 ≤ r ≤ 1,

1 if 1 < r ≤ r (x)− 1,

r (x)− r if r (x)− 1 < r ≤ r (x) .
Let {e1, . . . , en−1, γ

′(0)} be an orthonormal basis of TpM. Define ei(r) ∈1589

Tγ(r)M to be the parallel translation of ei = ei(0) along γ. Then the frame1590

{e1(r), . . . , en−1(r), γ
′(r)} forms an orthonormal basis of Tγ(r)M for r ∈1591

[0, r (x)]. Since γ is minimal, by the second variation of arc length formula,1592

we have for each i,1593

0 ≤ δ2ζei L(γ) =
∫ r(x)

0

(
(ζ ′)2(r)− ζ2(r)

〈
Rm

(
γ′(r), ei

)
ei, γ

′(r)
〉)
dr.

Summing over i, we obtain1594

(2.76)

∫ r(x)

0
ζ2(r)Ric

(
γ′(r), γ′(r)

)
dr ≤ 2(n− 1).

Let1595

(2.77) S(x) := sup
V ∈Sn−1

y , y∈B1(x)

Ric(V, V )+,

where Sn−1
y ⊂ TyM is the unit (n− 1)-sphere. We conclude:1596

Lemma 2.20. If x ∈Mn \B2 (p) and if γ : [0, r (x)]→Mn is a unit speed1597

minimal geodesic joining p to x, then1598

(2.78)

∫ r(x)

0
Ric

(
γ′(r), γ′(r)

)
dr ≤ 2(n− 1) +

2

3
(S(p) + S(x)) .
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This lemma estimates, in an integral sense, the amount of positive Ricci1599

curvature in the tangential direction that there can be along a minimal1600

geodesic.1601

We now apply the Laplacian upper bound (2.71) to prove the following1602

differential inequality for the distance function on Ricci solitons in terms of1603

the X-Laplacian operator:1604

(2.79) ∆Xϕ := ∆ϕ− ⟨X,∇ϕ⟩.

Proposition 2.21. Let (Mn, g,X, λ) be a complete Ricci soliton, and let1605

r = d(p, ·) be the distance from a fixed p ∈ Mn. Suppose that |Ric| ≤ K01606

on Bp(r0). Then there is a constant C = C(n) such that the inequality1607

(2.80) ∆Xr ≤ −
λ

2
r + C(n)

(
K0r0 + r−1

0

)
+ |X|(p)

holds in the support sense onMn \Br0(p).1608

Proof. Suppose that x is not in the cut locus of p. Since γ is a geodesic, by
applying the fundamental theorem of calculus and using the Ricci soliton
equation, we obtain

⟨X,∇r⟩(x)− ⟨X(p), γ′(0)⟩ =
∫ rx

0

d

dr
⟨X(γ(r)), γ′(r)⟩dr(2.81)

=

∫ rx

0
(∇X)(γ′(r), γ′(r))dr

= −
∫ rx

0
Ric

(
γ′(r), γ′(r)

)
dr +

λ

2
r (x) .

By combining this with (2.71), we obtain

∆Xr(x) ≤
∫ rx

0

(
(n− 1)(ζ ′)2(r) + (1− ζ2(r))Ric

(
γ′(r), γ′(r)

))
dr(2.82)

− λ

2
r(x) + ⟨X(p), γ′(0)⟩.

Let ζ (r) = r
r0

for 0 ≤ r ≤ r0 and ζ (r) = 1 for r0 < r ≤ rx. We then

conclude from (2.82)

∆Xr(x) ≤
n− 1

r0
+

2

3
r0 S(p)−

λ

2
r(x) + |X(p)|,

where S(p) is defined by (2.77). The proposition follows. □1609

2.7.3. Proof of the scalar curvature lower bound.1610

We are now ready to prove Theorem 2.14. The argument given in [299]1611

for gradient Ricci solitons extends essentially verbatim to the non-gradient1612

case; we tweak it slightly to obtain a sharp constant in the expanding case.1613

The proof will also make use of the following specialized cutoff function.1614
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Proposition 2.22. For each 0 < δ < 1/10, there exists a smooth function1615

φ = φδ : R→ [0, 1] such that1616

(2.83) φ(x) =

{
1 if x ≤ δ ,
0 if x ≥ 2,

− (1 + θ)
√
φ ≤ φ′ ≤ 0 , |φ′′| ≤ C0 ,

and1617

(2.84) 1− φ(x) + x

2
φ′(x) ≥ −ε,

where θ = θ(δ) and ε = ε(δ) are positive and tend to 0 as δ → 0.1618

Proof of Proposition 2.22. Fix any 0 < δ < 1/10. We start with a1619

smooth function η = ηδ satisfying1620

η(x) =


1 if x ∈ (−∞, δ],

2−δ−x
2−3δ if x ∈ [3δ, 2− 2δ],

0 if x ∈ [2,∞),

and1621

−1

2
(1 + θ) ≤ η′ ≤ 0, |η′′| ≤ C1,

where C1 = C1(δ) > 0 and θ = θ(δ) > 0 tends to 0 as δ → 0. Thus η is a1622

smooth approximation to the piecewise linear function that is equal to 1 for1623

x ≤ 2δ, decreases linearly to 0 over the interval [2δ, 2− δ], and is equal to 01624

for x ≥ 2− δ. Then φ := η2 satisfies1625

−(1 + θ)
√
φ ≤ φ′ ≤ 0, and |φ′′| ≤ C0 := 2C1.

To verify (2.84), we only need to consider x ∈ [δ, 2]. We consider three1626

cases. First, for x ∈ [δ, 3δ], we have1627

1− φ+
x

2
φ′ ≥ −3δ|φ′| ≥ −3δ(1 + θ).

Next, for x ∈ [3δ, 2− 2δ],

1− φ(x) + x

2
φ′(x) = 1− η(x)(η(x)− xη′(x))

= 1− (2− δ − x)(2− δ)
(2− 3δ)2

=
(2− δ)x− 8δ + 8δ2

(2− 3δ)2

≥ −2δ.

Finally, for x ∈ [2 − 2δ, 2], since φ is decreasing, we have φ(x) ≤ δ2/(2 −1628

3δ)2 ≤ δ2 and thus1629

1− φ+
x

2
φ′ ≥ 1− δ2 − (1 + θ)δ ≥ −θδ.

Thus φ satisfies (2.84). □1630
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Proof of Theorem 2.14. For the case where Mn is compact, which is1631

quite easy, see Exercise 2.11.1632

Let p ∈ Mn and define r(x) = d(x, p). Choose 0 ≤ r0 < 1 such that1633

|X(p)| ≤ r−1
0 and |Ric| ≤ r−2

0 on Br0(p). For each 0 < δ < 1/10 and a > 1/δ,1634

let φ = φδ be as in Proposition 2.22 and define ϕ = ϕδ,a :Mn → [0, 1] by1635

ϕ(x) = φ(r(x)/(ar0)).

Let x0 be a point at which the compactly supported function1636

(2.85) F := Fδ,a := ϕδ,aR :Mn → R

achieves its minimum value. We claim that1637

(2.86) F (x0) ≥

{
−C1/a if λ ≥ 0 ,

(1 + ε)nλ2 −
C1
a if λ < 0 ,

where C1 = C1(n, δ, λ, r0) is a positive constant independent of a and ε =1638

ε(δ) is positive and tends to 0 as δ → 0.1639

To see this, first consider the case that x0 ∈ Bδar0(p). Then F ≡ R in a
neighborhood of x0 and

0 ≤ ∆XF = ∆XR = −2|Ric|2 + λR = −2
∣∣∣∣Ric− R

n
g

∣∣∣∣2 − 2

n
R

(
R− nλ

2

)(2.87)

at x0, where the second equality is by Exercise 2.30. Since the first term is1640

nonpositive, the second term must be non-negative. So F (x0) = R(x0) ≥ 01641

if λ ≥ 0 and F (x0) = R(x0) ≥ nλ/2 if λ < 0. Either way, (2.86) holds in1642

this situation.1643

Now suppose that x0 /∈ Bδar0(p). If F (x0) ≥ 0, then (2.86) holds and
there is nothing to prove, so we may assume that F (x0) < 0. In particular,
x0 ∈ B2ar0(p) and ϕ(x0) > 0. By Calabi’s trick6, we may assume r is smooth
at x0 and compute that

0 ≤ ∆XF(2.88)

= ϕ∆XR+ 2⟨∇R,∇ϕ⟩+R∆Xϕ

≤ −2F

n

(
R− nλ

2

)
− 2R

|∇ϕ|2

ϕ
+R∆Xϕ.

6For, if x0 is in the cut locus of p, we may fix ϵ > 0 and replace F (x) by Fϵ(x) =
ϕ(rϵ(x)/(ar0))R(x) where rϵ(x) = d(x, γ(ϵ)) + ϵ and γ is a minimal geodesic from p to x0. We

may then apply the maximum principle to Fϵ and send ϵ→ 0. See, e.g., Subsection 1.2 of Chapter
10 in [111] for a more detailed exposition of Calabi’s trick.
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Here, we have used that ∇R = −R∇ϕ/ϕ at x0, since ∇F (x0) = 0. By1644

Proposition 2.21 and our choice of r0, we have1645

(2.89) ∆Xr ≤

{
C(n)/r0 if λ ≥ 0,

C(n)/r0 − λ
2 r if λ < 0,

and hence

∆Xϕ =
φ′

ar0
∆Xr +

φ′′

a2r20
≥

{
−C2

a if λ ≥ 0,

λrφ′

2ar0
− C2

a if λ < 0,
(2.90)

for some constant C2 = C2(n, δ).1646

Consider first the case that λ ≥ 0 (shrinkers and steadies). Using (2.88)
and (2.90), we see that

0 ≤ 2|F |
nϕ

(
F − nλϕ

2
+
n(1 + θ)2

a2r20
+
nC2

2a

)
≤ 2|F |

nϕ

(
F +

C3

a

)
,

for an appropriate constant C3 depending on n, δ, and r0. So F (x0) ≥1647

−C3/a and (2.86) follows.1648

Now suppose that λ < 0 (expanders). In this case, (2.88) and (2.90) give

0 ≤ 2|F |
nϕ

(
F − nλϕ

2
+
n(1 + θ)2

a2r20
+
nC2

2a
+
nλφ′r

4ar0

)
≤ 2|F |

nϕ

(
F +

C3

a
− nλ

2

(
φ− φ′r

2ar0

))
≤ 2|F |

nϕ

(
F +

C3

a
− nλ

2
+
nλ

2

(
1− φ+

φ′r

2ar0

))
.

However, by our construction of φ, specifically, by (2.84), we have1649

1− φ
(

r

ar0

)
+

r

2ar0
φ′
(

r

ar0

)
≥ −ε(δ)

at x0, so (2.86) follows in this case as well.1650

From the lower bound on F , we immediately obtain that1651

R(p) = Fδ,a(p) ≥

{
−C2/a if λ ≥ 0,

(1 + ε)λn2 −
C1
a λ if λ < 0

on Bδar0(x) for all 0 < δ < 1/10 and a > 1/δ. Sending a → ∞ for any1652

arbitrary 0 < δ < 1/10 and then sending δ → 0 completes the proof of the1653

scalar curvature lower bounds in Theorem 2.14.1654

Next, we prove the characterization of the equality case. If R achieves1655

one of these minimum values at some point, that is, if R(p) = 0 when λ ≥ 01656

or R(p) = nλ/2 when λ < 0, then R must coincide everywhere with this1657
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minimum value by the strong maximum principle. But then the equation1658

for ∆XR implies |Ric− (R/n)g|2 ≡ 0, and the claim follows.1659

Finally, suppose in addition that λ > 0 and the shrinker is gradient.1660

Then we have that ∇2f = 1
2g > 0 and f = |∇f |2 ≥ 0. Hence infM f =1661

f (o) = 0, where o is the unique critical point of f (which exists by Theorem1662

4.3 below). Defining ρ := 2
√
f , we have onMn \ {o} that1663

(2.91) ∇2(ρ2) = 2g and |∇ρ|2 = 1.

It now follows from the proof of Proposition 2.9 that (Mn, g) is isometric1664

to Euclidean space. This completes the proof of the theorem. □1665

Regarding the lower bound for the scalar curvature, more generally one1666

may consider a solution to the Ricci flow (Mn, g(t)). Then1667

(2.92)
∂R

∂t
= ∆R+ 2 |Ric|2 ≥ ∆R+

2

n
R2 ≥ ∆R.

Recall from Definition 1.10 that an ancient solution is a solution to the1668

Ricci flow which exists on an interval of the form (−∞, ω). The following1669

result for complete ancient solutions is due to B.-L.Chen; see [86] for the1670

proof.1671

Theorem 2.23. Any complete ancient solution to the Ricci flow must have1672

non-negative scalar curvature. If the solution has zero scalar curvature at1673

some point and time, then the solution is Ricci flat at all earlier times.1674

Chen’s theorem in particular applies to both shrinking and steady Ricci1675

solitons.1676

2.8. Completeness of the soliton vector field1677

The equivalence of Ricci solitons and self-similar solutions to the Ricci flow1678

is a fundamental heuristic principle and one that is at least morally true.1679

However, the correspondence established in Proposition 2.2 falls short of1680

realizing a true equivalence between the two concepts since the self-similar1681

solution it produces from a Ricci soliton need only be defined locally. In1682

order to properly leverage this correspondence, we will need to know when1683

the two concepts are really the same. The crucial issue is the completeness1684

of the Ricci soliton vector field.1685

Definition 2.24. A vector fieldX on a manifoldMn is said to be complete1686

if for all p ∈ Mn the maximal integral curve σ(t) of X with σ(0) = p is1687

defined for all t ∈ R.1688

In this section, we will present two criteria which guarantee the com-1689

pleteness of the Ricci soliton vector field which together show that in the1690
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situations of greatest interest for singularity analysis, the concepts of Ricci1691

solitons and self-similar solutions are indeed equivalent.1692

The first criterion is completely elementary.1693

Theorem 2.25 (Completeness of the soliton field, I). Suppose (Mn, g,X, λ)1694

is a Ricci soliton for which (Mn, g) is complete and of bounded Ricci cur-1695

vature. Then X is complete.1696

Proof. Fix any point p ∈ Mn and let σ : (A,Ω) → Mn be the maximal1697

integral curve of X with σ(0) = p. The completeness of (Mn, g) and the1698

local theory of ODEs implies that −∞ ≤ A < 0 < Ω ≤ ∞, and – given the1699

maximality of σ – that if either A > −∞ or Ω <∞, then d(p, σ(t))→∞ as1700

t↘ A or t↗ Ω, respectively.1701

Using the Ricci soliton equation, we compute that the function t 7→1702

|X|2(σ(t)) satisfies1703

d

dt
|X|2 = 2⟨∇XX,X⟩ = λ|X|2 − 2Ric(X,X)

for all t ∈ (A,Ω). Hence, since the Ricci curvature is bounded, there is a1704

constant C such that1705

−2C|X|2 ≤ d

dt
|X|2 ≤ 2C|X|2

along σ, and thus1706

e−Ct|X|(0) ≤ |X|(σ(t)) ≤ eCt|X|(σ(0))

for all t ∈ (A,Ω).1707

From this we see that, if Ω < ∞, then |X|(σ(t)) ≤ C ′ for all t ∈ [0,Ω).
But then, along any sequence 0 ≤ ti ↗ Ω, we would have

d(p, σ(ti)) ≤ L(σ|[0,ti]) =
∫ ti

0
|X|(σ(t)) dt ≤ C ′Ω,

contradicting the maximality of σ; here, L denotes the Riemannian length.1708

Thus we must have Ω = ∞. A similar argument shows that A = −∞, and1709

hence that σ(t) is defined for all t ∈ R. It follows that X is complete. □1710

Remark 2.26. Since Theorem 2.14 implies that the scalar curvature of1711

a complete Ricci soliton is bounded below, the two-sided bound on the1712

Ricci curvature in the theorem above may be replaced with merely an upper1713

bound.1714

The assumption that (Mn, g) be complete in Theorem 2.25 is certainly1715

necessary: if (Mn, g,X,Λ) is a complete Ricci soliton with a nontrivial (i.e.,1716

not identically zero) vector field and p ∈Mn is such that X(p) ̸= 0, then the1717

restriction of X to Mn \ {p} will not be complete. However, the necessity1718
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of the assumption of bounded Ricci curvature is less clear. The following1719

result of Z. H. Zhang [299] shows that, at least for gradient Ricci solitons,1720

the completeness of the manifold alone is enough to ensure the completeness1721

of the vector field.1722

Theorem 2.27 (Completeness of the soliton field, II). Suppose (Mn, g, f, λ)1723

is a gradient Ricci soliton for which (Mn, g) is complete. Then ∇f is a1724

complete vector field.1725

The key to the proof is Hamilton’s identity (2.43) and the universal lower1726

bound for scalar curvature proven in Theorem 2.14.1727

Proof of Theorem 2.27. By combining Theorem 2.14 and (2.43), we have1728

1729

(2.93) |∇f |2 ≤ λf + C

for some C = C(λ, n) ≥ 0. Fix p ∈Mn and let r(x) = d(x, p).1730

When λ ̸= 0, (2.93) implies that that h = λf + C satisfies h ≥ 0 and1731

|∇h|2 ≤ |λ|2h, that is,1732

|∇
√
h| ≤ |λ|/2.

Choosing q ∈Mn and integrating along any minimizing unit speed geodesic1733

γ : [0, r(q)]→Mn, we find1734

√
h(q)−

√
h(p) =

∫ r(q)

0

〈
∇
√
h(γ(s)), γ′(s)

〉
ds ≤

∫ r(q)

0

∣∣∣∇√h∣∣∣ ds ≤ |λ|
2
r(q).

Hence there is a constant C ′ > 0 such that1735

(2.94) |∇f |(q) ≤ |λ|r(q) + C ′

on all ofMn. On the other hand, when λ = 0, (2.93) says that |∇f | ≤
√
C,1736

so, after possibly enlarging C ′, estimate (2.94) is valid for all λ. The theorem1737

is now a consequence of the following lemma, which says that the vector field1738

X is complete. □1739

Lemma 2.28. Let X be a smooth vector field onMn. If there is a complete1740

metric g onMn relative to which |X|g(q) ≤ C(d(p, q)+1) for some constant1741

C and p ∈Mn, then X is complete.1742

Proof. Suppose g is a complete metric onMn relative to which the growth1743

of |X| = |X|g is no more than linear relative to the distance r(q) = d(p, q)1744

from some fixed p ∈ Mn. Fix an arbitrary q0 ∈ Mn and let σ : (A,Ω) →1745

Mn, −∞ ≤ A < 0 < Ω ≤ ∞, be any maximal integral curve of X with1746

σ(0) = q0.1747
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Now, by assumption, there is a constant C ≥ 0 such that, for any t ∈
[0,Ω), we have

r(σ(t)) ≤ r(q0) + d(q0, σ(t))

≤ r(q0) +
∫ t

0
|X|(σ(s)) ds

≤ r(q0) + Ct+ C

∫ t

0
r(σ(s)) ds,

and hence by Grönwall’s inequality,1748

r(σ(t)) ≤ eCt(r(q0) + Ct)

for all t < Ω. This shows that limt→Ω r(σ(t)) = ∞ only if Ω = ∞. The1749

same argument, applied to the integral curve t→ σ(−t) of −X, shows that1750

A = −∞, and it follows that X is complete. □1751

2.9. Compact steadies and expanders are Einstein1752

On closed manifolds, non-shrinking Ricci solitons are trivial. We have the1753

following result of Ivey:1754

Theorem 2.29. Any steady or expanding Ricci soliton on a closed manifold1755

is Einstein; i.e., Ric = r
ng, where r = Ravg.1756

Proof. Let (Mn, g,X, λ) be a compact Ricci soliton with λ ≤ 0. Integrating1757

the equation R + divX = nλ/2, we see that r = nλ/2 ≤ 0. By taking the1758

divergence of the Ricci soliton equation (2.1), we obtain1759

(2.95) ∆X +Ric(X) = 0.

From the equation1760

(2.96) ∆XR− λR+ 2 |Ric|2 = 0

we see that1761

(2.97) ∆X (R− r) + 2
∣∣∣Ric− r

n

∣∣∣2 + 2r

n
(R− r) = 0.

SinceMn is compact, R achieves its minimum value Rmin at some x0 ∈Mn,1762

and at any such point1763

2
∣∣∣Ric− r

n

∣∣∣2 + 2r

n
(R− r) ≤ 0.

Both terms are non-negative and thus vanish. In particular, Rmin = R(x0) =1764

r, so R(x) = r for all x ∈ Mn. But then every term in (2.97) must vanish1765

identically onMn, including |Ric− (r/n)g|2. □1766

The theorem is also true in the non-gradient case: see Exercise 2.30 for1767

a proof.1768
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2.10. Notes and commentary1769

The mathematical theory of Ricci solitons was first rigorously developed by1770

Hamilton [174, 176, 175, 178], laying the foundations of the theory and1771

exhibiting its deep connection to Ricci flow singularity analysis. Bryant,1772

Cao, Ivey, and Koiso made important contributions to the early development1773

of this theory. In the physics literature, the Ricci soliton equation first1774

appeared in Friedan [151]. A widely-cited survey is by Cao [61]. Expository1775

accounts include [111, Chapter 4], [101, Chapter 1], and [104, Chapter1776

27]. See the reference therein for extensive references on Ricci solitons.1777

Additionally, a selection of papers on Riemannian Ricci solitons and Kähler1778

Ricci solitons, not cited elsewhere in this book, are referenced in the Notes1779

and commentary sections of Chapters 4 and 3, respectively.1780

2.11. Exercises1781

2.11.1. Scalings and pullbacks of solitons.1782

Exercise 2.1 (Curvature under scaling). Prove the elementary curvature1783

scaling properties: If α is a positive real number, then1784

(2.98) Rm(αg) = αRm(g), Ric(αg) = Ric(g), R(αg) = α−1R(g).

Exercise 2.2 (Pullback of curvatures). Let ϕ be a local diffeomorphism.1785

Prove that1786

(1) Rmϕ∗g = ϕ∗Rmg.1787

(2) Ricϕ∗g = ϕ∗Ricg.1788

(3) Rϕ∗g = Rg ◦ ϕ.1789

Exercise 2.3 (Pullback of Lie derivative). Prove that if ϕ : N n →Mn is a1790

diffeomorphism, X is a vector field on Mn, and α is (covariant) tensor on1791

Mn, then1792

(2.99) ϕ∗(LXα) = Lϕ∗X(ϕ∗α).

Exercise 2.4 (Lie derivative of the metric). Prove the Lie derivative of the1793

metric identity (2.27). Generalize this to1794

(2.100) (LXg)ij = ∇iXj +∇jXi.

Exercise 2.5 (Lie derivative of the volume form). Prove that the Lie de-1795

rivative of the volume form is given by1796

(2.101) LXdµ = div(X)dµ.
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Exercise 2.6 (Diffeomorphism-invariance of solitons). Prove the diffeo-1797

morphism-invariance property (2) for Ricci solitons: If (Mn, g,X, λ) satisfies1798

(2.1) and if φ :Mn →Mn is a diffeomorphism, then1799

(2.102) Ricφ∗g +
1

2
Lφ∗Xφ

∗g =
λ

2
φ∗g.

2.11.2. Product solitons.1800

Exercise 2.7. Let (Mni
i , gi), i = 1, 2, be Riemannian manifolds with Levi-1801

Civita connections ∇i. Show that the Riemannian product (Mn1
1 , g1) ×1802

(Mn2
2 , g2) has Levi-Civita connection ∇ given by1803

(2.103) ∇X1+X2(Y1 + Y2) = (∇1)X1Y1 + (∇2)X2Y2

for Xi, Yi ∈ TMi, i = 1, 2.1804

Exercise 2.8. Denote the Riemann, Ricci, and scalar curvatures of (Mni
i , gi)1805

by Rmi, Rici, and Ri, respectively.1806

(1) Prove that the Riemann curvature tensor Rm of the Riemannian
product (Mn1

1 , g1)× (Mn2
2 , g2) is given by

(2.104) Rm(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

= Rm1(X1, Y1, Z1,W1) + Rm2(X2, Y2, Z2,W2).

(2) Prove (2.16) that the Ricci tensor Ric of the Riemannian product1807

satisfies Ric = Ric1 +Ric2; that is,1808

(2.105) Ric(X1 +X2, Y1 + Y2) = Ric1(X1, Y1) + Ric2(X2, Y2).

(3) Prove that the scalar curvature R of the Riemannian product sat-1809

isfies1810

(2.106) R(x1, x2) = R1(x1) +R2(x2)

for x1 ∈Mn1
1 , x2 ∈M

n2
2 .1811

2.11.3. Non-gradient Ricci solitons.1812

Exercise 2.9 (Topping–Yin expanding soliton). Prove that (R2, g,X,−1)1813

in Example 2.4 satisfies the expanding Ricci soliton equation (2.1) with1814

λ = −1.1815

Exercise 2.10. Let (Mn, g,X, λ) be a Ricci soliton. Prove (2.95):

∆X +Ric(X) = 0.

By taking the divergence of the equation above, prove (2.97):

∆X (R− r) + 2
∣∣∣Ric− r

n

∣∣∣2 + 2r

n
(R− r) = 0
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Exercise 2.11 (Compact case of R lower bound). Prove Theorem 2.14 in1816

the case where Mn is compact. Observe how the proof is simpler than1817

in the noncompact case. The parabolic version of this fact is that on a1818

closed manifold, under the Ricci flow the minimum of the scalar curvature1819

is nondecreasing.1820

2.11.4. Level sets of the potential function.1821

Exercise 2.12 (Level sets as evolving hypersurfaces). Let F :Mn → R be1822

a smooth function with ∇F (x) ̸= 0 for all x ∈ Mn. Show that each level1823

set Σc := {F = c} is a smooth hypersurface. Define a 1-parameter group of1824

diffeomorphisms ϕt :Mn →Mn by ∂tϕt =
∇F

|∇F |2 ◦ϕt, where we assume that1825

(Mn, g) is complete and the vector field on the right-hand side is complete.1826

Prove that ϕt(Σc) = Σc+t.1827

Exercise 2.13. Prove that the second fundamental form, defined by (2.34),1828

is symmetric:1829

(2.107) II(Y,X) = II(X,Y ) for X,Y ∈ TxΣc, x ∈ Σc.

Hint: We may extend the vectors X,Y to vector fields defined in a neigh-1830

borhood U of x inMn so that X,Y are tangent to Σc ∩ U . Note that then1831

[X,Y ] is tangent to Σc ∩ U .1832

Exercise 2.14. Prove the Gauss equations for a hypersurface Σ ⊂ Mn

with unit normal vector field ν (if you like, you may assume that Σ is a level
set, but this doesn’t simplify things): For X,Y, Z,W ∈ TxΣ,

RmM(X,Y, Z,W ) = RmΣ(X,Y, Z,W )(2.108)

− II(X,W ) II(Y, Z) + II(X,Z) II(Y,W ).

Hint: Extend X,Y, Z,W to vector fields defined in a neighborhood of x and1833

tangent to Σ. Use the formula1834

(2.109) ∇M
X Y = ∇Σ

XY − II(X,Y )ν.

Take the tangential component of the defining equation for RmM.1835

Remark 2.30. The interested reader may take the normal component and1836

derive the Codazzi equations:1837

(2.110) (∇Σ
X II)(Y,Z)− (∇Σ

Y II)(X,Z) = −⟨RmM(X,Y )Z, ν⟩.

2.11.5. Special solitons.1838

Exercise 2.15 (Manifolds with trace-free Ricci tensor). Use the contracted1839

second Bianchi identity (1.60) to prove that if (Mn, g) satisfies Ric = 1
nRg1840

and n ≥ 3, then R is a constant. In particular, (Mn, g) is an Einstein1841

manifold.1842
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Exercise 2.16. Suppose that a quadruple (Mn, g, f, λ) satisfies ∇2f = λ
2g.1843

Prove that, by adding a constant to f if necessary, we have1844

(2.111) |∇f |2 = λf.

Exercise 2.17. Hypothesize as in the previous exercise, now assuming that
λ = 1 and f > 0. Define ρ := 2

√
f . Show that |∇ρ| = 1 and ∇∇ρ∇ρ = 0.

Prove that

L∇ ln ρ

(
g

ρ2

)
= − 4

ρ2
d ln ρ⊗ d ln ρ.

2.11.6. Properties of solitons.1845

Exercise 2.18 (Critical points of f and R). Prove that for any GRS with1846

positive Ricci curvature, if x is a critical point of R, then x is a critical point1847

of f . Does this result hold for negative Ricci curvature?1848

Exercise 2.19 (Steady GRS have bounded R). Prove that the scalar cur-1849

vature of any steady GRS is uniformly bounded. Prove that for any steady1850

GRS, if R ≥ 0 (which is proved later), then |∇f | is uniformly bounded.1851

2.11.7. The f-divergence.1852

Exercise 2.20. Prove the f -contracted second Bianchi identity:1853

(2.112) divf
(
Ric+∇2f

)
=

1

2
∇Rf ,

where divf is defined by (2.61). Derive from this that Rf + λf is constant1854

on a gradient Ricci soliton (for a normalized gradient Ricci soliton we have1855

(2.48).1856

Exercise 2.21 (f -divergence theorem). Prove that on a compact Riemann-1857

ian manifold (Mn, g) with boundary, for any vector field V we have1858

(2.113)

∫
M

divf (V )e−fdµ =

∫
∂M
⟨V, ν⟩ e−fdσ,

where ν denotes the outward unit normal and where dσ is the induced1859

volume element of ∂M. A useful special case is when V is a gradient vector1860

field. For example, we obtain1861

(2.114)

∫
M
|∇f |2 e−fdµ =

∫
M

∆f e−fdµ

on a closed manifold.1862
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2.11.8. Variation of arc length and Laplacian comparison.1863

Exercise 2.22. Prove the first variation of arc length formula (2.69).1864

Hint: Define the map Γ(r, v) := γv(r). Use the formula1865

(2.115) ∂v|γ′(r)|2 = 2
〈
∇Γ
V γ

′(r), γ′(r)
〉
,

where ∇Γ denotes the covariant derivative along the map Γ.1866

Exercise 2.23. Prove the second variation of arc length formula (2.70).1867

Hint: Calculate

∂v|v=0

〈
γ′v(r)

|γ′v(r)|
,∇Γ

∂rV

〉
,

while using the formula

Rm(V, γ′v(r))V = ∇Γ
∂v(∇

Γ
∂rV )−∇Γ

∂r(∇
Γ
∂vV ).

Exercise 2.24. Denote r(x) := d(x, p). Prove that, in the strong barrier1868

sense,1869

(2.116) ∆r(x) ≤ 1

r(x)
− 1

r(x)2

∫ r(x)

0
r2Ric

(
γ′(r), γ′(r)

)
dr.

Exercise 2.25. Let k ∈ R. Choose ζ(r) = snk(r)
snk(rx)

in the inequality (2.71)

for the Laplacian of the distance function, where

snk(r) :=


1√
−k sinh

(
r
√
−k
)

if k < 0,

r if k = 0,
1√
k
sin
(
r
√
k
)

if k > 0.

(2.117)

What upper bound do you obtain for ∆r(x)?1870

Exercise 2.26. Let r0 ≤ r(x)/2. What second variation inequality do you1871

obtain if you replace ζ(r) in (2.75) by the slightly more general:1872

(2.118) ζ (r) =


r
r0

if 0 ≤ r ≤ r0,
1 if r0 < r ≤ r (x)− r0,

r(x)−r
r0

if r (x)− r0 < r ≤ r (x) ?

2.11.9. Maximum principles.1873

Exercise 2.27 (Elliptic maximum principle). Suppose that a function h1874

with compact support on a complete Riemannian manifold (Mn, g) satisfies1875

1876

(2.119) ∆h+ V · ∇h ≥ ah2 + bh,

where a ∈ R+, b ∈ R, and V is a vector field. What is the best upper bound1877

for h that you can obtain?1878
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Exercise 2.28 (Weak maximum principle). Prove Lemma B.1 below.1879

Hint: See Theorem 4 on p. 333 of Evan’s book [145], which implies that1880

part (2) holds locally on a manifold. Use part (2) to prove parts (1) and (3)1881

by contradiction.1882

Exercise 2.29. Prove that for a shrinking gradient Ricci soliton (Mn, g, f),1883

at any minimum point o of f we have f(o) ≤ n
2 .1884

Hint: Apply the maximum principle (Lemma B.1) to the equation1885

(2.53) for ∆ff .1886

Exercise 2.30 (Formulas for Ricci solitons). Prove that for a Ricci soliton1887

(Mn, g,X, λ):1888

(1) The function S := R− nλ
2 satisfies1889

(2.120) ∆S − ⟨X,∇S⟩+ 2

∣∣∣∣Ric−λ2 g
∣∣∣∣2 + λS = 0.

(2) Prove Theorem 2.29 for Ricci solitons that are not necessarily gra-1890

dient.1891

Hint: When λ ≤ 0, deduce that S is constant by applying the1892

strong maximum principle to (2.120).1893


