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Abstract

This is the third talk in the short course
“A Retrospective Look at Ricci Flow” given via Tencent
http://tianyuan.xmu.edu.cn/cn/MiniCourses/2077.html
at Xiamen University from March 20 to 30, 2023.

Lecture 3: Ricci Solitons

In this talk we complete the discussion of Hamilton’s seminal 1982
result classifying compact 3-dimensional manifolds with positive
Ricci curvature from the point of view of singularity analysis.

References:
Reference: Bennett Chow, Ricci Solitons in Low Dimensions, AMS,
to appear.
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Ricci flow singularity analysis:
The idea of looking under a microscope

Let (Mn, g(t)), [0, T ), where T ∈ (0, ∞), be a singular solution to
the Ricci flow on a closed manifold. By Hamilton’s long-time
existence theorem, we have that

sup
(x ,t)∈Mn×[0,T )]

| Rm |(x , t) = ∞.

We want to look under a microscope at neighborhoods of the
space-time points of a sequence {(xi , ti)}. Let

Ki := | Rm |(xi , ti) = | Rmg(ti ) |(xi)
and assume that Ki → ∞. This last condition says that we are
seeing a glimpse of the forming singularity.
What understanding of the singularity formation is sufficient
for (1) proving convergence as t → T or (2) defining a Ricci

flow past the singularity time T?
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What does it mean to look under a microscope?

Consider the metric g(ti), which is the solution to the Ricci flow at
time ti . We have that the norm of the curvature of this metric at
the point xi is equal to Ki , which tends to infinty. To rectify this
defect, we consider the rescaled metric

Ki g(ti).
This metric has the property that the norm of its curvature at the
point xi is equal to 1: Since

| RmKi g(ti ) | = K−1
i | Rmg(ti ) |,

we have
| RmKi g(ti ) |(xi) = K−1

i | Rmg(ti ) |(xi) = 1.

So we have geometric control of the metric Kig(ti) at the point xi .

But do we have geometric control (i.e., curvature bound) of
the metrics g(t) for times t near ti and at points x near xi?
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The goal: To see a limiting shape

Recall that Ki := | Rm |(xi , ti) and the rescaled metrics are Kig(ti).
We would like to take a limit of a subsequence of Kig(ti) to obtain
a smooth Riemannian metric g∞ in the limit on a manifold Mn

∞
possibly different than the original manifold Mn. The limit
Riemannian manifold (Mn

∞, g∞) is called a singularity model (as
we will see later, it is actually only a single time-slice of a
singularity model solution to Ricci flow).

How do we find suitable sequences of space-time points
{(xi , ti)} so that there is an associated singularity model?

Ideally, one would like to prove the existence of singularity models
associated to all space-time sequences of points {(xi , ti)}, but in
practice one should aim for whatever class of sequences is sufficient
for topological applications.
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Sequences of rescaled Ricci flows

For the rescaled metrics, not only do we want to see “still frames”
(Mn, Kig(ti)), we also want to see the whole “movie”; i.e., instead
of a single metric, a whole Ricci flow. For this reason we rescale
the whole Ricci flow based at the time ti as follows: Define

gi(t) := Kig(ti + K−1
i t).

It is easy to check that each family of metrics gi(t) is a solution to
the Ricci flow on Mn and the time interval of existence of each
flow is [

−Ki ti , Ki(T − ti)
)
.

We have
gi(0) = Kig(ti).

Observe that since Ki → ∞ and ti → T > 0, we have that
−Ki ti → −∞. Thus, if we have a limit solution g∞(t), then it is
defined at least on the ancient time interval (−∞, 0].
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Selecting sequences of points, I: Doubling time estimate

We are interested in proving the existence of singularity models.
Firstly, we recall some basic estimates. Recall that in dimension
2, under the Ricci flow the scalar curvature satisfies the equation

∂tR = ∆R + R2.

In all dimensions, we have the following inequality:
∂t | Rm | ≤ ∆| Rm | + 8| Rm |2.

Thus, by the maximum principle, if | Rm |(x , t0) ≤ K0 for all
x ∈ Mn, then for all x ∈ Mn and t ∈

[
t0, t0 + 1

8K0

)
we have

K (x , t) := | Rm |(x , t) ≤ K0
1 − 8K0(t − t0) .

In particular, for all x ∈ Mn and t ∈
[
t0, t0 + 1

16K0

]
we have

K (x , t) = | Rm |(x , t) ≤ 2K0.

That is, on a sufficiently short time interval, the maximum
curvature norm at most doubles.
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Selecting sequences of points, II: Derivatives of curvatures
estimate

Now suppose that for all x ∈ Mn and t ∈
[
t0, t0 + 1

16K0

]
we have

K (x , t) = | Rm |(x , t) ≤ 2K0.

By an estimate of Bando, we have:

Theorem (Bernstein-type derivatives of curvature estimates)
Under the hypotheses above, for all k ≥ 1,

|∇k Rm |(x , t) ≤ CK 1+ k
2

0

for all x ∈ Mn and t ∈
[
t0 + 1

32K0
, t0 + 1

16K0

]
.

That is, given a curvature bound for a time interval, we have
derivatives of curvatures bounds for the second half of the time
interval. This useful in view of the Arzelà–Ascoli Theorem.
Remark. W.-X. Shi proved an important local version of Bando’s
derivatives of curvatures estimates.
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Selecting sequences of points, III: Types of singular
solutions

One way to select sequences of points about which to rescale our
solution to Ricci flow is according to the singularity type.
Consider a shrinking round sphere singular solution (Sn, g(t)),
t ∈ [0, T ), where T ∈ (0, ∞) is the time at which the sphere
shrinks to a point. We have for this “model solution” that

(T − t)| Rm |(x , t) ≡ cn,

where cn is some constant depending only on n. Motivated by this,
make the following definition. A singular solution to the Ricci flow
is a Type I singular solution if it satisfies

sup
Mn×[0,T )]

(T − t)| Rm |(x , t) < ∞.

We say that it is a Type II singular solution if
sup

Mn×[0,T )]
(T − t)| Rm |(x , t) = ∞.
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Singularity models, I: The definition

Recall that given a singular solution (Mn, g(t)), t ∈ [0, T ), and a
sequence of space-time points {(xi , ti)}, we have the rescaled
solutions:

gi(t) := Kig(ti + K−1
i t), t ∈

[
− Ki ti , Ki(T − ti)

)
on Mn. Since we are centering our microscope at the point xi , we
consider the pointed sequence of solutions of Ricci flow:

(Mn, gi(t), xi), , t ∈
[

− Ki ti , Ki(T − ti)
)
.

Goal: To show that there exists a subsequence such that

(Mn, gi(t), xi) converges to a smooth complete limit solution
(Mn

∞, g∞(t), x∞).

(Mn
∞, g∞(t), x∞) is called a singularity model.
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Singularity models, II: Singularities are complicated

A given singular solution to the Ricci flow (Mn, g(t)), t ∈ [0, T ),
may have many different singularity models, either because:

1. Singularities are forming at the time T at different locations
in space.

2. The singularity forming at the time T and at a given location
is complicated. This includes “bubbling” phenomena.

Next, we look at singularity formation at a given location in space
from an intuitive perspective, first explained by Hamilton in his
1995 “Formation of Singularities” paper.
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Singularity models, III: Neckpinch singularities

This figure shows a Type I neckpinch singularity forming at the
singularity time T . The metric on the top is at the time T and the
metric on the bottom is at an earlier time.

The figure below shows rescalings of the forming neckpinch, which
limit to the round cylinder. The time t increases from left to right.
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Singularity models, V: Round cylinder models

▶ Recall that singularity models are actually defined as the
limit of rescaled solutions to the Ricci flow, not just rescaled
Riemannian metrics, and the limit is itself a solution to the
Ricci flow.

▶ For the neckpinch, the associated singularity model is a
shrinking round cylinder.

Figure: Snapshots of a shrinking Sn−1 × R cylinder, where n ≥ 3.
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Singularity models, VI: Degenerate neckpinch singularities

The Type II degenerate neckpinch singularity is similar to a
neckpinch singularity except that the region to one side of the
pinching neck also shrinks to a point, and a cusp-like singularity
forms.

The figure shows the formation of a degenerate neckpinch
singularity. The time t increases from left to right.
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Singularity models, VII: Models for the degenerate
neckpinch

▶ For a degenerate neckpinch in dimension at least 3, associated
singularity models are (1) the shrinking cylinder and (2) the
Bryant soliton.

▶ The Bryant steady gradient Ricci soliton on Rn has positive
curvature operator and opens up like a paraboloid.

O

r

√
r
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Singularity models, VIII

The Type I neckpinch and Type II degenerate neckpinch
singularities are intuitive examples that can be made rigorous. In
particular, Angenent and Knopf have analyzed rotationally
symmetric neckpinch singularity formation and Gu and Zhu have
proved the existence of rotationally symmetric degenerate
neckpinch singularity formation.

However, we are still left with the question:

How do we begin to analyze singularity formation for the
Ricci flow?

A key tool is the Cheeger–Gromov compactness theorem,
which we now recall.
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Cheeger–Gromov compactness theorem, I

Let {(Mn
i , gi , xi)} be a sequence of pointed, complete Riemannian

manifolds. Under what geometric conditions does there exist a
subsequence such that (Mn

i , gi , xi) converges to a complete limit
(Mn

∞, g∞, x∞) as i → ∞?

The Cheeger–Gromov compactness theorem says that
uniformly bounded curvatures on the Mn

i , together with uniform
no local collapsing at xi , is a sufficient condition.

Hamilton proved the Cheeger–Gromov compactness theorem for
solutions to the Ricci flow (instead of Riemannian manifolds). In
the next slide we give the statement of Hamilton’s compactness
theorem for Ricci flow.
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Cheeger–Gromov compactness theorem, II
In 1995 Hamilton proved the following.

Theorem (Cheeger–Gromov-type compactness theorem)
Let {(Mn

i , gi(t), xi)}, t ∈ I, be a sequence of complete Ricci flows
defined on a common time open interval I containing 0. Suppose
that (curvature bound)

| Rmgi (t) | ≤ C on Mn
i × I

for some constant C independent of i . Suppose also that (no local
collapsing)

Vol B(xi , 0, 1) ≥ κ

for some positive constant κ independent of i .
Then there is a subsequence such that (Mn

i , gi(t), xi) converges
to a complete solution to the Ricci flow (Mn

∞, g∞(t), x∞),
t ∈ I, with curvature norm bounded by C and Vol B(x∞, 0, 1) ≥ κ.

Ben Chow Xiamen Short Course on Ricci Flow



Perelman’s no local collapsing, I: The statement

Recall that Perelman’s no local collapsing says the following.

Theorem (Perelman’s no local collapsing)
For any finite time compact Ricci flow (M, (gt)t∈[0,T )), there exists
κ > 0 depending only on g(0), T , ρ such that if (x , t) and
0 < r ≤ ρ satisfy R ≤ r−2 in B(x , t, r), then

Volt B(x , t, r) ≥ κrn,

where Volt denotes the volume with respect to g(t).

If | Rm | ≤ cnr−2 for a suitable constant cn depending only on n,
then R ≤ r−2. So, if | Rm | ≤ C on Mn, then by taking
r =

√
cn/C we have that | Rm | ≤ cnr−2 on all of Mn. Thus, if a

solution to the Ricci flow satisfies | Rm | ≤ C , then
Volt B(x , t, r) ≥ κrn.
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Perelman’s no local collapsing, II: Singularity models

One important significance of Perelman’s no local collapsing
theorem is that, for singularity analysis, it reduces the hypotheses
of Hamilton’s Cheeger–Gromov compactness theorem to only that
of bounded curvature. We have (singularity models):

Theorem (Existence of singularity models)
Let {(Mn, gi(t), xi)}, (αi , 0), be a sequence of rescalings of a
compact Ricci flow (Mm, g(t)), t ∈ [0, T ), where αi → −∞.
Suppose that

| Rmgi (t) | ≤ C on Mn
i × (αi , 0)

for some constant C independent of i . Then there exists a
subsequence such that (Mn

i , gi(t), xi) converges to a complete
ancient solution to the Ricci flow (Mn

∞, g∞(t), x∞),
t ∈ (−∞, 0), with | Rm | bounded by C and Vol B(x∞, 0, 1) ≥ κ.
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Choosing sequences of points, I: The issue

To effect the Ricci flow compactness theorem, we need to answer
the following question:

Question: How big of a space-time neighborhood of the point
(xi , 0) is the curvature of gi(t) uniformly bounded?

Note that the point (xi , 0) in the solution gi(t) corresponds to the
point (xi , ti) in the solution g(t).

If we choose the sequence of space-time points {(xi , ti)} in a
suitable way, we can answer this question in an affirmative way.

We effect the choice depending on whether the singular solution is
Type I or Type II.
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Choosing sequences of points, II: Type I singular solutions

We first recall the following curvature gap estimate for singular
solutions
Lemma
If (Mn, g (t)) is a solution to the Ricci flow on a closed manifold
on a maximal time interval [0, T ), where T < ∞, then

(T − t) max
x∈Mn

|Rm (x , t)| ≥ 1
8 .

Proof. Recall that
∂t |Rm| ≤ ∆ |Rm| + 8 |Rm|2 .

By the maximum principle, the quantity
K (t) := maxx∈Mn |Rm| (x , t) satisfies dK

dt ≤ 8K 2. From this and
the fact that limt→T K (t)−1 = 0, we conclude that

K (t)−1 ≤ 8 (T − t) .
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Choosing sequences, III: Type I singular solutions, cont.

In the Type I case, by the lemma we can choose a sequence (xi , ti)
with ti → T and

(T − ti) Ki = (T − ti) |Rm| (xi , ti) ≥ 1
8 .

Recall that gi(t) = Kig(ti + K−1
i t). We have the curvature

estimates:
| Rmgi (t) | = K−1

i | Rmg(ti +K−1
i t) | ≤ K−1

i
C

T − (ti + K−1
i t)

= C
(T − ti) Ki − t ≤ C

1
8 − t

for t ∈ [−tiKi ,
1
8). By the existence of singularity models

theorem, a subsequence of {(Mn, gi (t) , xi)} converges to a
complete ancient solution (Mn

∞, g∞ (t) , x∞) defined on
(−∞, 1

8) with
∣∣∣Rmg∞(t)

∣∣∣ ≤ C
1
8 −t . This is our singularity model.
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Choosing sequences, IV: Type I singular solutions, cont.

The following diagram shows why the sequence selection method
works for Type I singular solutions.

| Rm |(t) ≤ C
T−t

| Rm |max(t) ≥ 1
8(T−t)

t

Ben Chow Xiamen Short Course on Ricci Flow



Choosing sequences of points, V: Type II singular solutions

In the Type II case, we first choose any sequence of times Ti ↗ T .
Then we “pretend” that Ti is the final time and choose points and
times (xi , ti) ∈ Mn × [0, Ti ] such that

(Ti − ti) | Rm | (xi , ti) = max
Mn×[0,Ti ]

(Ti − t) | Rm | (x , t) .

Again let Ki := | Rm | (xi , ti) and again define:

gi (t) := Kig(ti + K−1
i t).

Then
| Rm gi | (x , t) = K−1

i | Rm g |(x , ti + K−1
i t) ≤ (Ti − ti) Ki

(Ti − ti) Ki − t

for all x ∈ Mn and t ∈ [−tiKi , (Ti − ti) Ki) and (Ti − ti) Ki → ∞.
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Choosing sequences, VI: Type II singular solutions, cont.

Recall that the rescaled solutions gi (t) := Kig(ti + K−1
i t) satisfy

| Rm |gi (x , t) ≤ (Ti − ti) Ki
(Ti − ti) Ki − t

for all x ∈ Mn and t ∈ [−tiKi , (Ti − ti) Ki) and (Ti − ti) Ki → ∞.
By the singularity model existence theorem, we obtain a
singularity model (Mn

∞, g∞(t), x∞) defined on the eternal time
interval (−∞, ∞) as a complete limit with bounded curvature and
such that

1 = | Rm g∞ |(x∞, 0) = sup
M∞×(−∞,∞)

| Rm g∞ |(x , t).
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Convergence of 3-manifolds with positive Ricci curvature, I

Let (M3, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a
closed 3-manifold with g(0) having positive Ricci curvature and
defined on a maximal time interval. Since Rg(0) > 0 and
∂tR ≥ ∆R + 2

3R2, we have that 0 < T < ∞ (maximum time is
finite). So, by definition, g(t) is either a Type I or a Type II
singular solution. In either case, we obtain subconvergence to a
complete ancient solution (M3

∞, g∞(t), x∞) defined at least on the
time interval (−∞, 1

8) (possibly (−∞, ∞)) and satisfying
| Rm g∞ | ≤ C

1
8 −t in the Type I case and | Rm g∞ | ≤ C in the Type II

case. By the way we have rescaled the sequence, we have that

| Rm g∞ |(x∞, 0) = 1.

By the strong maximum principle, we have that the scalar
curvature of the limit is positive: Rg∞ > 0 on M3

∞.
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Convergence of 3-manifolds with positive Ricci curvature, II

Now, by using the “Ricci pinching improves” estimate for the
solution (M3, g(t)), t ∈ [0, T ), to the Ricci flow at the times ti :∣∣ Ric −1

3Rg
∣∣

R (ti) ≤CR−δ(ti),

we can show that the singularity model (M3
∞, g∞) satisfies∣∣ Ricg∞ −1

3Rg∞g∞
∣∣ ≡ 0.

This is because, by the Cheeger–Gromov convergence of
gi := gi(0) to g∞ := g∞(0), we have for i large that on Ui ⊂ M3

∞,∣∣ Ricg∞ −1
3Rg∞g∞

∣∣
Rg∞

CG≈
∣∣ Ricgi −1

3Rgi gi
∣∣

Rgi
≤CK−δ

i R−δ
gi → 0

(since gi = Kig(ti) implies that Rgi = K−1
i R(ti)). Here, {Ui}∞

i=1 is
an exhaustion of M3

∞ by open subsets.
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Convergence of 3-manifolds with positive Ricci curvature, II

Recall from the previous slide that the singularity model (M3
∞, g∞)

satisfies
Ricg∞ = 1

3Rg∞g∞.

By the contracted second Bianchi identity, this implies that Rg∞ is
a positive constant on M3

∞. Indeed,

1
2∇g∞Rg∞ = div(Ricg∞) = 1

3 div(Rg∞g∞) = 1
3∇g∞Rg∞ ,

so that ∇g∞Rg∞ ≡ 0. Hence the Ricci curvature of g∞ is a
positive constant, which in turn implies that the sectional
curvature of g∞ is a positive constant since we are in dimension 3.
Since the metric g∞ is complete, we conclude that M3

∞ is
diffeomorphic to a spherical space form, and hence so is M3.
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THANK YOU!
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