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Abstract

This is the second talk in the short course
“A Retrospective Look at Ricci Flow” given via Tencent
http://tianyuan.xmu.edu.cn/cn/MiniCourses/2077.html
at Xiamen University from March 20 to 30, 2023.

Lecture 2: Three-Manifolds with Positive Ricci Curvature

In this talk we discuss Hamilton’s seminal 1982 result classifying
compact 3-dimensional manifolds with positive Ricci curvature by
using the Ricci flow.

References:
Reference: Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci
flow, Chapter 3, AMS 2006.
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Introduction

In the first lecture we discussed the Ricci flow in dimension 2. In
this lecture we begin to discuss the main result of Hamilton’s
seminal paper “Three-manifolds with positive Ricci curvature”
from a more general perspective.
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Short-time existence of the Ricci flow

A very nice property of Ricci flow is that for any metric on a closed
manifold, there exists a unique solution to the Ricci flow
starting at that initial metric. This result was proved by Hamilton
in 1982. A simplified proof was given by DeTurck in 1983.

Theorem (Short-time existence)
For any closed Riemannian manifold (Mn, g0), there exists
T ∈ (0,∞] and a unique family of metrics g(t), t ∈ [0,T ), that
satisfy the Ricci flow

∂tg(t) = −2 Ricg(t)

with the initial condition g(0) = g0.

We need this result in order to use Ricci flow as a tool to improve
metrics by deforming them to “better” metrics.

Ben Chow Xiamen Short Course on Ricci Flow



Evolution of R under the Ricci flow, I

Given that we have a solution g(t) on Mn to the Ricci flow,
how do we study the behavior of this solution?
The scalar curvature R is the easiest curvature to work with since
it is a function. If g(t) is a solution to the Ricci flow on a manifold
Mn, then its scalar curvature R(t) evolves by the following
heat-type equation:

∂tR = ∆R +2| Ric |2.
This formula is useful for obtaining a lower bound for the scalar
curvature. Indeed, we have in general for any 2-tensor α that

|α|2 ≥ 1
n trace(α)2.

By taking α = Ric, since trace(Ric) = R we obtain:

∂tR ≥ ∆R +2
nR2.

The evolution equation for R is central to the study of Ricci flow.
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Evolution of R under the Ricci flow, II

By applying the parabolic maximum principle to the inequality
∂tR ≥ ∆R + 2

nR2, we obtain the estimate
R(x , t) ≥ − n

2t for all x ∈ Mn, t > 0.

R(x , t)

t

In particular, the scalar curvature of a Ricci flow tends toward
being non-negative.
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The shrinking Ricci soliton equation, I

However, again we have the difficulty of obtaining upper
estimates for the scalar curvature. Unlike in dimension n = 2, it
does not seem useful to consider the potential function f defined
by ∆f = R − r for higher-dimensional Riemannian manifolds,
except in the Kähler case. Even so, there are lessons to be learned
from the potential function.
So, to understand how to proceed in higher-dimensions, we
re-examine the 2-dimensional case. Recall that under the Ricci flow
on S2, Hamilton first proved that (under the modified Ricci flow)
the limit metric g∞ (we will now call it g for simplicity) satisfies
the equation (we change the sign for f from the last lecture)

2 Ric = Rg = − 2∇2f + rg , (so − ∆f = R − r).
Again, this is the fundamental equation satisfied by the limit
metric g∞.
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The shrinking Ricci soliton equation, II

Recall from the last slide that the limit metric g∞ of the Ricci flow
on S2 satisfies the equation

Ric = −∇2f + r
2g ,

where r > 0. Hamilton then showed that, since we are on the
2-sphere, f must be constant, so that R ≡ r for g∞.

Definition (Shrinking soliton)
If (Mn, g , f ) in any dimension satisfies this equation (with r = 1):

Ric +∇2f = 1
2g ,

then we say that it is a shrinking (gradient Ricci) soliton.

Recall that this equation generalizes the Einstein metric equation
since that is the case where f is constant, so that Ric = 1

2g .
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Properties of shrinking solitons, I

Let (Mn, g , f ) be a shrinking soliton; i.e.,

Ric +∇2f = 1
2g .

By tracing this equation, we obtain

R + ∆f = n
2 .

The contracted second Bianchi identity says that

div(Ric) = 1
2∇R.

By applying this to the shrinking soliton equation, one can show
that (exercise!):

∇R = 2 Ric(∇f ).
This is a basic and useful equation for the study of Ricci solitons.
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Properties of shrinking solitons, II

Let (Mn, g , f ) be a shrinking soliton. We can substitute the
equation Ric +∇2f = 1

2g into the equation ∇R = 2 Ric(∇f ) to
obtain

∇R = 2 Ric (∇f ) = −2∇2f · ∇f + g · ∇f = −∇|∇f |2 + ∇f .

Thus (by adding a suitable constant to f ), we have that

R + |∇f |2 = f .

This is another important equation in the study of shrinking
solitons.
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Ricci flow associated to a shrinking soliton

A fundamental fact is that, given a shrinking soliton (Mn, g , f ),
there is an associated Ricci flow (Mn, g(t)), t ∈ (−∞, 1), and
time-dependent potential function f (t) such that:

∂tg(t) = −2 Ricg(t) ,

∂t f (t) = |∇g(t)f (t)|2g(t) ,
and

Ricg(t) +∇2
g(t)f (t) = 1

2τ(t)g(t) ,
where τ(t) := 1 − t. Consequently,

Rg(t) + ∆g(t)f (t) = n
2τ(t) ,

Rg(t) + |∇g(t)f (t)|2g(t) = f (t)
τ(t) .

The equations for (Mn, g , f ) are the case of t = 0, so that τ = 1.
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A sphere and its associated Ricci flow

As an example of a shrinking soliton and its associated Ricci flow,
we consider a sphere.

t → −∞

The red sphere represents the shrinking soliton (Sn, g), where
Ric = 1

2g . For the associated Ricci flow (Sn, g(t)), this is time
t = 0. The spheres shrink to a point at time t = 1. As t → −∞,
the spheres expand to infinity. We have Ricg(t) = 1

2(1−t)g(t).
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Perelman’s coupled Ricci flow equations

Hamilton’s Ricci flow
∂tg = −2 Ric

is coupled by Perelman to the backward heat-type equation
∂t f = −∆f + |∇f |2 − R + n

2τ (∗)

and the backward-time equation
∂tτ = −1.

For the special case of a Ricci flow associated to a shrinking soliton
(Mn, g , f ), recall that we have ∂t f = |∇f |2. By subtracting the
equation R + ∆f − n

2τ = 0, we obtain equation (∗). That is, a
shrinking soliton solution to the Ricci flow satisfies Perelman’s
coupling for Ricci flow.
We have motivated Perelman’s coupling of Ricci flow by
Ricci solitons. How else might we motivate it?
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Motivations from the Euclidean heat kernel

Recall that the Euclidean heat kernel is given by

H(x , t) = (4πt)−n/2e− |x|2
4t x ∈ Rn, t > 0.

Taking the natural logarithm of this, we obtain

ln H = −n
2 ln(4πt) − |x |2

4t .

Hence, we have for the Euclidean heat kernel:
∂t ln H − |∇ ln H|2 = ∆ ln H = − n

2t .

Recall that the Li–Yau inequality for a positive solution u to the
heat equation on a complete Riemannian manifold with
non-negative Ricci curvature is:

∂t ln u − |∇ ln u|2 = ∆ ln u ≥ − n
2t .

We see that this inequality is modeled on the Euclidean heat kernel.
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Perelman’s coupling and the Gaussian shrinking soliton

Let’s return to Perelman’s coupling of ∂tg = −2 Ric, ∂tτ = −1, to
∂t f = −∆f + |∇f |2 − R + n

2τ . (∗)
Consider, as a special case, Euclidean space (Rn, gE) as a static
solution to the Ricci flow. Define

f (x , t) := |x |2

4τ(t) ,

where τ(t) = 1 − t for t < 1 and x ∈ Rn. We easily compute that

∆f = 2n
4τ = n

2τ and ∂t f = |x |2

4τ2 = |∇f |2.
Thus f satisfies (∗). If fact, (Rn, gE, f ) is the Gaussian shrinking
soliton:

RicE +∇2
Ef = ∇2

Ef = 1
2τ gE.

All of this is a special case of the fact that a shrinking Ricci soliton
satisfies Perelman’s coupling of the Ricci flow.
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Perelman’s entropy monotonicity formula,I

Perelman’s entropy is defined for a closed Riemannian manifold
(Mn, g), a function f , and a positive real number τ as:

W(g , f , τ) :=
∫

Mn

(
τ

(
R + |∇f |2

)
+ (f − n)

)
(4πτ)−n/2 e−f dµ.

Integrating by parts yields

W(g , f , τ) =
∫

Mn

(
τ

(
R + 2∆f − |∇f |2

)
+ f − n

)
(4πτ)−n/2 e−f dµ.

As a special case, consider the entropy of the Gaussian soliton
defined by (Rn, f (t), g(t)), where

f (x , t) = |x |2
4τ(t) and g(t) = gE.

Observe that
∆f = n

2τ and τ |∇f |2 = f .
Thus, W(g(t), f (t), τ(t)) ≡ 0 for the Gaussian shrinking soliton.
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Perelman’s entropy monotonicity formula,II

Let u := (4πτ)−n/2 e−f . Under Perelman’s coupling for the Ricci
flow, we have

d
dt W (g (t) , f (t) , τ (t)) = 2τ

∫
Mn

∣∣∣∣Ric +∇2f − 1
2τ g

∣∣∣∣2 udµ≥ 0.

That is, W (g (t) , f (t) , τ (t)) is monotonically non-decreasing.
Moreover, if d

dt W (g (t) , f (t) , τ (t)) = 0, then

Ricg(t) +∇2
g(t)f (t) = 1

2τ(t)g(t).

That is, (Mn, g(t), f (t)) is a shrinking soliton. In particular,
Perelman’s entropy is monotone increasing in general and is
constant on shrinking Ricci solitons.
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Proof of Perelman’s entropy monotonicity formula

The proof of Perelman’s entropy monotonicity formula is a
calculation. Given (Mn, g , f , τ), Perelman’s Harnack quantity is:

v :=
(
τ

(
R + 2∆f − |∇f |2

)
+ f − n

)
u,

where u = (4πτ)−n/2 e−f . One computes (using integration by
parts) that

W (g , f , τ) =
∫

M
v dµ.

If (Mn, g(t), f (t), τ(t)) satisfies Perelman’s coupling of Ricci
flow, then(

− ∂

∂t − ∆ + R
)

v = −2τ
∣∣∣∣Ric +∇2f − 1

2τ g
∣∣∣∣2 u.

This implies the entropy monotonicity formula:

− d
dt W (g (t) , f (t) , τ (t)) = −2τ

∫
Mn

∣∣∣∣Ric +∇2f − 1
2τ g

∣∣∣∣2 udµ ≤ 0.
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The conjugate heat operator

The heat operator is

□ := ∂

∂t − ∆.
Its conjugate (a.k.a. adjoint) operator is:

□∗ := − ∂

∂t − ∆ + R.
The reason for the term R in □∗ is that the metrics g(t) depend
on time and that under the Ricci flow the evolution of the volume
form is given by:

∂

∂t dµ = −R dµ.

Indeed, using this, one calculates that for any functions ϕ and ψ
on Mn × I, where I is an interval,∫∫

Mn×I
□ϕψ dg dµ =

∫∫
Mn×I

ϕ□∗ψ dµdt.
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Perelman’s differential Harnack estimate

Perelman’s coupling for (Mn, g(t), f (t), τ(t)) implies that
u = (4πτ)−n/2 e−f satisfies the conjugate heat equation:

□∗u = 0.
Recall also that v :=

[
τ

(
R + 2∆f − |∇f |2

)
+ f − n

]
u satisfies

□∗v = −2τ
∣∣∣∣Ric +∇2f − 1

2τ g
∣∣∣∣2 u ≤ 0.

Given a Ricci flow (Mn, g(t)), assume that the coupling
(f (t), τ(t)) is defined for τ ∈ (0,T ), for some T > 0. Further
assume that as τ(t) → 0, we have that u(·, t) approaches a Dirac
delta function δx0 , where x0 ∈ Mn. That is, assume that u is a
conjugate heat kernel. In this case, Perelman proved that

v =
[
τ

(
R + 2∆f − |∇f |2

)
+ f − n

]
u ≤ 0.

This is Perelman’s differential Harnack estimate.
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No Local Collapsing

The W entropy monotonicity formula yields estimates from below
for the volume of balls on which the scalar curvature is bounded
from above. This is called Perelman’s no local collapsing. This
result is fundamentally important in the study of singularity
formation in Ricci flow.
Let B(x , t, r) denote the ball of radius r > 0 centered at a point
x ∈ Mn with respect to the metric g(t) at time t.

Theorem (Perelman’s no local collapsing (κ-noncollapsing))
For any finite time compact Ricci flow (Mn, (gt)t∈[0,T )), there
exists κ > 0 depending only on g(0),T , ρ such that if (x , t) and
0 < r ≤ ρ satisfy R ≤ r−2 in B(x , t, r), then

Volt B(x , t, r) ≥ κrn,

where Volt denotes the volume with respect to g(t).
Ben Chow Xiamen Short Course on Ricci Flow



Idea of the proof of Perelman’s no local collapsing

Suppose that R ≤ r−2 in Br := B(x , t, r). Define f (t) by
(4πr2)−n/2e−f (t) := cχBr ,

where χBr is the characteristic function of the ball Br and where
the constant c satisfies c Volt Br = 1. Then, by W-monotonicity,

W(g(t), f (t), r2 ) ≥ W(g(0), f (0), r2 + t) ≥ C(g(0),T , ρ).
On the other hand,

W(g(t), f (t), r2 ) =
∫

M

(
r2R − ln c − n

2 ln(4πr2) − n
)

cχBr dµ

≤ 1 − ln c − n
2 ln(4πr2) − n

≤ ln Volt Br
rn − n

2 ln(4π),

and the result follows. A rigorous proof uses a cutoff function.
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Commentary

What is remarkable about Perelman’s entropy formula is that it
only uses the evolution equations for the metric g , the scalar
curvature R, and the volume form dµ. So far, we have not had to
understand how the Ricci tensor Ric or the Riemann curvature
tensor Rm evolve under the Ricci flow.
On the other hand, Hamilton’s original 1982 paper is based in large
part on estimates for the Ricci tensor. We now discuss these
estimates.

Ben Chow Xiamen Short Course on Ricci Flow



Hamilton’s 3-manifolds with positive Ricci curvature, I

Recall that under the Ricci flow, the scalar curvature evolves by

∂tR = ∆R + | Ric |2.

Next, we wish to state the evolution equation for the Ricci
tensor. Given symmetric 2-tensors α and β, we define their
product by

(α · β)(X ,Y ) := 1
2

n∑
i=1

(
α(X , ei)β(ei ,Y ) + α(Y , ei)β(ei ,X )

)
,

where {ei}n
i=1 is an orthonormal frame. The square of a

symmetric 2-tensor is defined by

α2(X ,Y ) := (α · α)(X ,Y ) =
n∑

i=1
α(X , ei)α(ei ,Y ).
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Hamilton’s 3-manifolds with positive Ricci curvature, II

The Lichnerowicz Laplacian ∆L acting on symmetric 2-tensors is
defined by

∆Lα := ∆α+ 2 Rm(α) + 2 Ric ·α,
where

Rm(α)(X ,Y ) :=
n∑

i ,j=1
Rm(X , ei , ej ,Y )α(ei , ej).

We remark that if α were an (antisymmetric) 2-form, instead of a
symmetric 2-tensor, then we would have that the Licherowicz
Laplacian of α,

∆Lα = ∆dα := −(dδ + δd)α,
equals the Hodge Laplacian of α (Bochner–Weitzenböck formula).
If (Mn, g(t)) is a solution to the Ricci flow, then

∂t Ric = ∆L Ric .
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Hamilton’s 3-manifolds with positive Ricci curvature, III
For any Riemannian 3-manifold (M3, g), its Riemann curvature
tensor can be expressed in terms of Ric and g as follows:

Rijkℓ = Riℓgjk + Rjkgiℓ − Rikgjℓ − Rjℓgik − 1
2R (giℓgjk − gikgjℓ) .

Here, we use index notation to represent the Riemann curvature
tensor as Rijkℓ and the Ricci tensor as Rij .
By using this formula, we see that for any solution (M3, g(t)) of
the Ricci flow on a 3-manifold, the Ricci tensor evolves by:

∂t Ric = ∆ Ric +3R Ric −6 Ric2 +
(
2 |Rc|2 − R2)

g .
Using, this, Hamilton computed that(

∂t − ∆ − 2∇R
R · ∇

) | Ric |2

R2 ≤ − 4
R3 P,

where P :=
∑

[ijk]=[123] λ
2
i (λi − λj)(λi − λk) ≥ 0 and λ1, λ3, λ3 are

the eigenvalues of the Ricci tensor.
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Hamilton’s 3-manifolds with positive Ricci curvature, IV

By applying the maximum principle to the equation on the
previous slide, we obtain that if | Ric |2

R2 ≤ C at t = 0, then
| Ric |2

R2 ≤ C for t ≥ 0.

Observe that

0 ≤
∣∣ Ric −1

3Rg
∣∣2

R2 =
| Ric |2 − 1

3R2

R2 = | Ric |2

R2 − 1
3 .

Thus, | Ric |2
R2 ≥ 1

3 , with equality if and only if Ric = 1
3Rg .

So our goal is to show that under the Ricci flow, as t approaches
the singularity time T , we have | Ric |2

R2 → 1
3 for the metric g(t).
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Hamilton’s 3-manifolds with positive Ricci curvature, V

Let (M3, g0) be a closed Riemannian 3-manifold with Ric > 0.
Since M3 is compact, there exists ε > 0 such that Ric ≥ εR g . Let
g(t), t ∈ [0,T ), be the solution to the Ricci flow with g(0) = g0.
Hamilton proved that g(t) satisfies Ric ≥ εR g for all t ∈ [0,T ). A
metric that satisfies such an inequality is called Ricci pinched. For
such metrics, for each point p in M, the minimum Ricci curvature
at p is at least ε times the maximum Ricci curvature at p.
Hamilton then proved the following strong estimate: There exists
δ > 0 and a constant C such that

R−2∣∣ Ric −1
3Rg

∣∣2 ≤ C R−δ.

In particular, if {(xi , ti)} is a sequence of points in M3 × [0,T )
such that R(xi , ti) → ∞, then we have

R−2∣∣ Ric −1
3Rg

∣∣2(xi , ti) → 0.
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Hamilton’s 3-manifolds with positive Ricci curvature, VI

In the next lecture we will further discuss singularity analysis and
how to prove Hamilton’s 1982 result that for any closed
Riemannian 3-manifold (M3, g0) with Ric > 0, a solution to the
normalized Ricci flow exists for all time t ∈ [0,∞) and as
t → ∞, the metric g(t) converges to a smooth metric g∞ on M3

which satisfies Ric = 1
3Rg . This, in turn, implies that g∞ has

constant positive sectional curvature.
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THANK YOU!
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