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Chapter 14

Uniformization of5965

Surfaces via Heat Flow5966

Chapter from a book in progress.5967

Recall that the differential geometric version of the uniformization the-5968

orem (Theorem 8.14) says that for any Riemannian metric g0 on a closed5969

surface M2, there exists a positive function v such that the new metric vg05970

on M2 has constant curvature. That is, by changing infinitesimal lengths5971

but not infinitesimal angles associated to the metric, one can arrange so that5972

the new metric is nice in the sense that it has constant curvature. In this5973

chapter, we consider Hamilton’s heat flow approach to the proof of this re-5974

sult. Namely, we start with a Riemannian metric on a closed surface and we5975

deform the metric in its conformal class by a heat-type equation, called the5976

Ricci flow, to a constant curvature metric. Figure 14.0.1 shows snapshots of5977

a solution to the Ricci flow on a 2-sphere.5978
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352 14. Uniformization of Surfaces via Heat Flow

Figure 14.0.1. A rotationally symmetric solution to the Ricci flow on
the 2-sphere. Metrics at later times are to the right. As the area de-
creases to zero, the metrics become rounder. Credit: Wikimedia Com-
mons, Public Domain. Author: CBM

14.1. Families of conformally equivalent metrics on surfaces5979

LetM2 be a closed oriented 2-dimensional manifold. Let g0 be a Riemannian5980

metric on M2. Let u(t) : M2 → R, t ∈ I, , where I is an interval, be a 1-5981

parameter family of functions. Then5982

(14.1) g(x, t) := e2u(x,t)g0(x),

t ∈ I, is a 1-parameter family of metrics. By definition, each metric5983

g(t) = e2u(t)g0 is conformal to (or conformally equivalent to) g0; that is,5984

the infinitesimal angles defined by g(t) are the same as those defined by g05985

(see §8.4). The function e2u(t) is called the conformal factor. For simplic-5986

ity, we will also call u the conformal factor.5987

Figure 14.1.1. A Riemannian surface (M2, g0), where M2 is diffeo-
morphic to S2.

Not all metrics on S2 can be isometrically embedded in R3, so the draw-5988

ing of the Riemannian surface (M2, g0) in Figure 14.1.1 should not be viewed5989

too literally. On the other hand, we can visualize the Riemannian metric g05990

on M2 as follows. Let ϕ : S2 → M2 be a diffeomorphism, where S2 is the5991

unit sphere in R3. Consider the pulled back metric5992

(14.2) h0 := ϕ∗g0,
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which is by definition isometric to g0. So visualizing the metric h0 on S2 is5993

the same as visualizing the metric g0 on M2.5994

The metric h0 defines an inner product on each tangent space TxS
2,5995

x ∈ S2. We visualize h0 by drawing the set of unit vectors in TxS
2. Since5996

(h0)x is an inner product on TxS
2, this set is an ellipse in a plane in R3; see5997

Figure 14.1.2. A conformal metric g = e2ug0 can now be visualized via its5998

pullback metric5999

(14.3) h := ϕ∗g = e2u◦ϕh0.

Since the metric h is pointwise conformal to h0, the set of unit vectors in6000

TxS
2 with respect to hx is an ellipse which is a constant multiple (scaling)6001

of the ellipse for h0.6002

Figure 14.1.2. Visualizing a metric on a topological 2-sphere by pull-
back: The unit 2-sphere, but with the pull-back metric h0 = ϕ∗g0 de-
fined by (14.2). The unit circle in TxS

2 with respect to h0 is an ellipse.

We now consider the variation of a 1-parameter family of conformal6003

metrics. Let6004

(14.4) v(x, t) := 2
∂u

∂t
(x, t).

Differentiating (14.1) yields the equivalent formula6005

(14.5)

(
∂

∂t
g

)
(t) = 2

∂u

∂t
(t)e2u(t)g0 = v(t)g(t).

Namely, it is easy to see that the conformal deformation of the metric g(t)6006

equation6007

(14.6)
∂

∂t
g(t) = v(t)g(t)

holds if and only if the conformal factors u(t) satisfy6008

(14.7) 2
∂u

∂t
(t) = v(t).

Even though g(t) is just a 1-parameter family of conformally equivalent6009

metrics, we say that g(t) satisfying (14.6) is a conformal deformation6010

with velocity v(t).6011
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Let R(t) = 2K(t) denote the scalar curvature of g(t), which is equal to6012

twice the Gauss curvature of g(t). By (8.46), we have that if g(t) = e2u(t)g0,6013

then6014

(14.8) R(t) = e−2u(t)
(
R0 − 2∆0u(t)

)
= e−2u(t)R0 − 2∆g(t)u(t),

where R0 and ∆0 denote the scalar curvature and Laplacian of g0, respec-6015

tively; the second equality follows from Lemma 11.2.6016

14.2. Variation of the curvature under a conformal variation6017

of the metric6018

By differentiating (14.8), we calculate that if the metrics g(t) satisfy (14.6),
i.e., ∂tg = vg, then

∂R

∂t
(t) = −2∂u

∂t
(t)e−2u(t)

(
R0 − 2∆0u(t)

)
− 2e−2u(t)∆0

(
∂u

∂t
(t)

)
= −v(t)R(t)− e−2u(t)∆0v(t)

= −v(t)R(t)−∆g(t)v(t).

Summarizing, we have proved the following.6019

Lemma 14.1. If a 1-parameter family of Riemannian metrics g(t), t ∈ I,6020

on a 2-dimensional smooth manifold M2 satisfies ∂
∂tg(t) = v(t)g(t), where6021

v(t) : M2 → R for each t ∈ I, then their scalar curvatures satisfy the6022

equation6023

(14.9)
∂R

∂t
(t) = −∆g(t)v(t)− v(t)R(t).

If we take v(t) = −R(t), then we obtain the Ricci flow on surfaces.6024

Corollary 14.2. If a 1-parameter family of Riemannian metrics g(t) on a6025

2-dimensional manifold satisfies the equation ∂
∂tg(t) = −R(t)g(t), called the6026

Ricci flow on surfaces, then their scalar curvatures satisfy the equation6027

(14.10)
∂R

∂t
(t) = ∆g(t)R(t) +R(t)2.

Equation (14.10) is a nonlinear heat-type equation and also called a6028

reaction-diffusion equation. On the right-hand side, the diffusion term is6029

the Laplacian ∆R and the reaction term is the function of the solution6030

R2. Without the reaction term, from (14.10) we obtain the heat equation,6031

which smooths out the solution. Without the diffusion term, from (14.10)6032

we obtain an ODE, which in this case is dR
dt = R2, where R is a function of6033

t.6034

https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
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Example 14.3 (Shrinking 2-sphere). Suppose that g0 is the 2-sphere of6035

radius ρ0. Then its scalar curvature is R0 = 2
ρ20
. As we will see in Example6036

14.4, there exists a (unique) solution g(t) to the Ricci flow satisfying the6037

initial condition g(0) = g0 which form round shrinking 2-spheres. Hence,6038

for each t, R(t) is a constant. Thus, R(t) satisfies the ODE dR
dt (t) = R(t)2.6039

Solving this ODE, we obtain6040

(14.11) R(t) =
1

R−1
0 − t

=
1

ρ20
2 − t

.

Observe that this solution exists on the maximal time interval
[
0,

ρ20
2

)
; in6041

fact, it can be defined on the ancient time interval
(
−∞, ρ

2
0
2

)
. As t→ ρ20

2 ,6042

we have that R(t) → ∞ and the radius of the 2-sphere at time t tends to6043

zero. See Figure 14.2.1

Figure 14.2.1. A constant curvature 2-sphere shrinking to a point un-
der the Ricci flow.

6044

14.3. The normalized Ricci flow equation on surfaces6045

As we have seen from the shrinking spheres in Example 14.3, the areas of6046

the metrics is not preserved in general. The normalized Ricci flow rectifies6047

this defect by scaling the metrics so that the area is constant in time.6048

Let g(t) be a family of metrics on a closed oriented surface M2. Let r(t)6049

denote the average scalar curvature of g(t), that is,6050

(14.12) r(t) :=

∫
M2 R(t)dµ(t)∫

M2 dµ(t)
,

where dµ(t) denotes the area form of g(t). This is equal to the average of6051

the function R(t) on M2 with respect to the area form dµ(t). Observe that6052

(14.13)

∫
M2

(
R(t)− r(t)

)
dµ(t) = 0.

Hamilton [Ham88] considered the following equation for g(t):6053

(14.14)
∂

∂t
g(t) =

(
r(t)−R(t)

)
g(t).
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This equation, called the normalized Ricci flow on surfaces, is equivalent6054

to the equation6055

(14.15) 2
∂u

∂t
(t) = r(t)−R(t)

for the conformal factor u(t) defined by g(t) = e2u(t)g0.6056

As for any equation, the main questions are: Do solutions exist and how6057

do they behave?6058

Firstly, geometrically, we will see below that the metrics ḡ(t̄) of a nor-6059

malized Ricci flow are just metric rescalings and time reparametrizations16060

of the metrics g(t) of a Ricci flow:6061

(14.16)
∂

∂t
g(t) = −R(t)g(t).

Observe that the metric is (conformally) shrinking at points where the cur-6062

vature is positive and the metric is expanding at points where the curvature6063

is negative. See Figures 14.3.1 and 14.3.2.6064

In the next subsection (see (14.20) below), we will prove that the area6065

of g̃(t̃) is constant under the normalized Ricci flow. On the other hand (see6066

(14.24) below), under the Ricci flow the area of g(t) is given by6067

(14.17) Area(g(t)) = Area(g0)− 4πχ(M2)t.

So:6068

(1) If χ(M2) > 0, then the area of g(t) decreases at a constant rate.6069

(2) If χ(M2) = 0, then the area of g(t) is constant.6070

(3) If χ(M2) < 0, then the area of g(t) increases at a constant rate.6071

In particular, if M2 is diffeomorphic to the 2-sphere S2, then under the6072

Ricci flow the area of g(t) decreases at a constant rate until it limits to zero6073

in a finite amount of time (provided one can show the solution exists as long6074

as the area is positive).6075

Example 14.4 (Constant curvature solutions). Suppose that (M2, g0) is a6076

closed Riemannian surface with constant curvature r0 := R(g0). Then:6077

(1) g(t) ≡ g0, t ∈ [0,∞), is the unique maximal solution to the nor-6078

malized Ricci flow with g(0) = g0.6079

(2) g(t) := (1− r0 t)g0, for all t ≥ 0 satisfying 1− r0 t > 0, is the unique
maximal solution to the (unnormalized) Ricci flow with g(0) = g0.
Indeed, we check that

∂tg(t) = −r0g0 = −R(0)g(0) = −R(t)g(t).

1This is why we denote the time parameter by t̄ instead of t.
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If r0 ≤ 0, then this solution exists for all t ∈ [0,∞). On the other6080

hand, if r0 > 0, then this solution exists on the maximal time6081

interval [0, r−1
0 ); this agrees with Example 14.3.6082

Figure 14.3.1. A Riemannian surface (M2, g0), where M2 is diffeo-
morphic to the 2-sphere S2. The arrows indicate that at points with
positive curvature, the metric shrinks conformally under the Ricci flow.

Figure 14.3.2. The unit 2-sphere, but with the pulled back metric
h0 = ϕ∗g0 defined by (14.2). At points with positive curvature, the
ellipses shrink forward in time indicating that the metric is conformally
shrinking at these points. At points with negative curvature, the ellipses

expand.

14.4. Evolution of the area under the normalized and6083

unnormalized Ricci flows6084

Now, suppose that we are given a solution g(t) to the normalized Ricci flow6085

on a closed oriented surface M2. Suppose in addition that the time interval6086

of existence is I = [0, T ), where T ∈ (0,∞], and that g(0) = g0. (The last6087

equality is equivalent to the conformal factor satisfying u(0) = 0.)6088

Let {ω1
0, ω

2
0} be a positively-oriented orthonormal coframe field for g0

defined on an open subset U ofM2. Then {ω1(t), ω2(t)} := {eu(t)ω1
0, e

u(t)ω2
0}

is a positively-oriented orthonormal coframe field for g(t) = e2ug0 on U .
Recall from (8.3) that the area form dµ(t) = dµg(t) of g(t) is given by

dµ(t) = ω1(t) ∧ ω2(t) = e2u(t)ω1
0 ∧ ω2

0 = e2u(t)dµg0
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on U . Thus,

∂

∂t
dµ(t) = 2

∂u

∂t
(t)e2u(t)dµg0 =

(
r(t)−R(t)

)
dµ(t).

Hence, on all of M2 we have under the normalized Ricci flow that the area6089

form of g(t) evolves by6090

(14.18)
∂

∂t
dµ(t) =

(
r(t)−R(t)

)
dµ(t).

Since r(t) is the average of R(t), we have

d

dt
Area(g(t)) =

d

dt

∫
M2

dµ(t) =

∫
M2

∂

∂t
dµ(t)(14.19)

=

∫
M2

(
r(t)−R(t)

)
dµ(t)

= 0.

Thus, under the normalized Ricci flow,6091

(14.20) Area(g(t)) ≡ Area(g0)

for all t ∈ [0, T ). As a consequence, by the Gauss–Bonnet formula, we have6092

(14.21) r(t) =

∫
M2 R(t)dµ(t)∫

M2 dµ(t)
≡ 4πχ(M2)

Area(g0)

is a constant independent of t. So we denote r := r(t).6093

On the other hand, under the (unnormalized) Ricci flow (14.14), we have6094

similarly to (14.18) that6095

(14.22)
∂

∂t
dµ(t) = −R(t)dµ(t).

Therefore, under the Ricci flow we have (cf. (14.19))6096

(14.23)
d

dt
Area(g(t)) = −

∫
M2

R(t)dµ(t) = −4πχ(M2) = −r0Area(g0),

where r0 is the average scalar curvature at time zero. We conclude that6097

under the Ricci flow,6098

(14.24) Area(g(t)) = Area(g0)− 4πχ(M2)t = Area(g0)(1− r0t).

See Figure 14.4.1.6099
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t
T

Area(g(t))

Area(g0)

Figure 14.4.1. Area, as a function of time, of a closed surface with
positive Euler characteristic under Ricci flow. The supremal time is

T = Area(g0)

4πχ(M2)
.

14.5. The relation between the unnormalized and6100

normalized Ricci flows6101

In this section we show that the unnormalized and normalized Ricci flows6102

are related by a change in time parameter and by homothetic rescalings,6103

depending on time, of the metrics. It is in this sense that solutions to the6104

two flows with the same initial conditions are geometrically comparable: the6105

shapes, but not the sizes, of the metrics are the same for the two flows.6106

Let g(t) be a solution of the Ricci flow. Define space and time rescaled6107

metrics by6108

(14.25) ḡ(t̄) :=
1

1− r0t
g(t),

where6109

(14.26) t̄(t) :=

∫ t

0

1

1− r0τ
dτ = − 1

r0
ln(1− r0t).

By (14.24), we have that6110

(14.27) Area
(
ḡ(t̄)

)
≡ Area(g0).

We have
dt̄

dt
(t) =

1

1− r0t
.

Using this, we compute that

∂

∂t̄
ḡ(t̄) =

1

dt̄/dt

(
1

1− r0t
g(t)

)
= (1− r0t)

∂

∂t

(
1

1− r0t
g(t)

)
=

∂

∂t
g(t) + r0

1

1− r0t
g(t)

= −R(t)g(t) + r0ḡ(t̄)

=
(
r0 − R̄(t̄)

)
ḡ(t̄).
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Thus, ḡ(t̄) is a solution to the normalized Ricci flow with ḡ(0) = g0.6111

Conversely, suppose that ḡ(t̄) is a solution to the normalized Ricci6112

flow with ḡ(0) = g0. By reversing the discussion above, we have that if6113

t(t̄) := 1
r0
(1 − e−r0 t̄) and g(t) := e−r0 t̄ḡ(t̄), then g(t) is a solution to the6114

(unnormalized) Ricci flow with g(0) = g0.6115

14.6. Short-time existence of the normalized Ricci flow6116

In order to use the Ricci flow, we need to first establish the short-time6117

existence of solutions given an initial metric. By (14.15) and (14.8), we have6118

that the function u(x, t) satisfies6119

(14.28)
∂u

∂t
(t) = e−2u(t)∆0u(t)− e−2u(t)R0

2
+
r

2
.

This is a heat-type equation in u. Technically, it has the fancy name of a6120

quasilinear second-order parabolic partial differential equation. In any case,6121

there is a well-developed theory of such equations and in particular we have6122

the following well-known result. The proof of this result is beyond the scope6123

of this book. See e.g. Friedman’s book [Fri64] for the methods to prove6124

such a result.6125

Lemma 14.5. Given any function u0 : M2 → R, there exists T ∈ (0,∞]6126

and a unique family of functions u(t), t ∈ [0, T ), that satisfy the heat-type6127

equation (14.28) with the initial condition u(0) = u0.6128

By taking u0 = 0, i.e., the zero function, and by the equivalence of6129

equations (14.28) and (14.14), we have the following.6130

Corollary 14.6 (Short-time existence and uniqueness). For any closed Rie-6131

mannian surface (M2, g0), there exists T ∈ (0,∞] and a unique family of6132

metrics g(t), t ∈ [0, T ), that satisfy the normalized Ricci flow (14.14) with6133

the initial condition g(0) = g0.6134

We take T to be the supremal time of existence. (In other words, [0, T )6135

is the maximal time interval of existence.) That is, by definition no con-6136

tinuation of the solution exists beyond time T . Later, we shall show that6137

the supremal time of existence T of the normalized Ricci flow on surfaces is6138

equal to ∞.6139

14.7. A lower bound for the curvature under the normalized6140

Ricci flow6141

An important tool for studying heat-type equations is the parabolic maxi-6142

mum principle, which we introduce and apply in this section to study the6143

behavior of the scalar curvatures of solutions to Ricci flow. We have seen6144
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the statement of the parabolic maximum principle for one-space and one-6145

time dimensional heat-type equations in the previous chapter on the curve6146

shortening flow. In this section we will give the statement and proof in more6147

generality.6148

By Lemma 14.1, since g(t) is a conformal deformation with velocity6149

v(t) = r−R(t), we have that scalar curvature satisfies the following evolution6150

equation under the normalized Ricci flow:6151

(14.29)
∂R

∂t
(t) = ∆g(t)R(t) +R(t)2 − rR(t).

Using that r is constant in time, we may rewrite this formula as6152

(14.30)
∂

∂t
(R(t)− r) = ∆g(t)(R(t)− r) + (R(t)− r)2 + r(R(t)− r).

In particular, by dropping from the right-hand side the square term, which6153

is non-negative, we obtain6154

(14.31)
∂

∂t
(R(t)− r) ≥ ∆g(t)(R(t)− r) + r(R(t)− r).

This, in turn, implies that6155

(14.32)
∂

∂t

(
e−rt(R(t)− r)

)
≥ ∆g(t)

(
e−rt(R(t)− r)

)
.

14.7.1. The parabolic maximum principle on manifolds. In general,6156

if w(t) :Mn → R, t ∈ [0, T ), are functions satisfying6157

(14.33)
∂w

∂t
(x, t) ≥ ∆g(t)w(x, t),

where g(t), t ∈ [0, T ), is a 1-parameter family of Riemannian metrics on6158

Mn, then we say that w is a supersolution to the heat equation (with6159

normalized Ricci flow background). So e−rt(R(t) − r) is a supersolution to6160

the heat equation by (14.32).6161

The following is fundamentally important to estimating solutions to6162

second-order parabolic partial differential equations. It has a wide range6163

of applications and is “unreasonably effective”.6164

Theorem 14.7 (Parabolic minimum principle for supersolutions to the heat6165

equation). If w : Mn × [0, T ) → R, where Mn is compact, satisfies (14.33)6166

and if w(x, 0) ≥ −C for all x ∈Mn, where C is some constant, then6167

(14.34) w(x, t) ≥ −C for all x ∈Mn, t ∈ [0, T ).

Proof. The idea of the proof is simply the first and second derivative tests
from calculus. The trick to implement this is to introduce a so-called fudge
factor. To this end, let ϵ > 0 and define

wϵ(x, t) := w(x, t) + ϵt+ ϵ.
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By (14.33), we have6168

(14.35)
∂wϵ

∂t
(x, t) ≥ ∆wϵ(x, t) + ϵ.

By hypothesis, wϵ(x, 0) ≥ −C + ϵ for all x ∈Mn.6169

Suppose for a contradiction that the function wϵ is less than −C some-6170

where in Mn × [0, T ). Then there exists a first time t0 ∈ (0, T ) such that6171

(14.36) wϵ(x0, t0) = −C for some x0 ∈Mn.

This is a rather intuitive result, true since wϵ is continuous and Mn is6172

compact, which we will prove in the remark right after this proof.6173

By the choice of t0, we have that wϵ(x, t) ≥ −C for all (x, t) ∈ Mn ×
[0, t0]. By the first derivative test, since wϵ on M

n × [0, t0] attains its mini-
mum at (x0, t0), we have

∂wϵ

∂t
(x0, t0) ≤ 0 ,

∇wϵ(x0, t0) = 0⃗;

see Figure 14.7.1. By the second derivative test (11.5), we have that

(∇2wϵ)(x0,t0) ≥ 0

is positive semi-definite. In particular, by tracing this, we obtain

(∆wϵ)(x0, t0) ≥ 0;

see Figure 14.7.2. By applying the first and second derivative tests to
(14.35), we obtain

0 ≥ ∂wϵ

∂t
(x0, t0) ≥ (∆wϵ)(x, t) + ϵ ≥ ϵ.

This is a contradiction since ϵ > 0. Therefore, wϵ ≥ −C on all ofMn×[0, T ).6174

By taking ϵ→ 0, we conclude that w ≥ −C on all of Mn × [0, T ). □6175

Figure 14.7.1. The first derivative test: At the minimum point (x0, t0)
we have ∂wϵ

∂t
≤ 0.
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Figure 14.7.2. The second derivative test: At the minimum point
(x0, t0) we have ∆wϵ ≥ 0.

Remark 14.8. We give a proof of (14.36). Let

t0 := sup
{
t̄ ∈ [0, T ) : wϵ > −C on Mn × [0, t̄ ]

}
.

Firstly, since wϵ(·, 0) ≥ −C + ϵ on Mn and since wϵ is continuous, we have6176

that t0 > 0. Secondly, since wϵ < −C somewhere in Mn × [0, T ), we have6177

t0 < T . Thirdly, by the definition of t0, we have wϵ(·, t0) ≥ −C on Mn.6178

Suppose for a contradiction that wϵ(·, t0) > −C on all of Mn. Since Mn
6179

is compact, this implies that wϵ(·, t0) ≥ −C + δ on Mn for some constant6180

δ > 0. Since wϵ is continuous and since Mn is compact, there exists η > 06181

such that wϵ ≥ −C onMn× [t0+η]. This is a contradiction to the definition6182

of t0.
2 We conclude that wϵ(·, t0) = −C somewhere on Mn.6183

14.7.2. Applying the maximum principle to bound the scalar cur-6184

vature from below. By applying the parabolic minimum principle (The-6185

orem 14.7) to (14.32), we have that if R0 − r ≥ −C (such a C always exists6186

since M2 is compact), then6187

(14.37) e−rt(R(t)− r) ≥ −C.
That is, under the normalized Ricci flow on surfaces, we have the estimate:6188

(14.38) R(t)− r ≥ −Cert.
This estimate is particularly effective when r < 0. This is because in this6189

case we have a lower bound for minx∈M2(R(x, t) − r) that is exponentially6190

decaying in time. By the Gauss–Bonnet formula, the condition that r < 06191

is equivalent to the topological condition that χ(M2) < 0, that is, the genus6192

of M2 is g := g(M2) > 1.6193

Exercise 14.1 (Parabolic maximum principle for subsolutions of the heat6194

equation). Prove that if w :Mn×[0, T )→ R, whereMn is compact, satisfies6195

(14.39)
∂w

∂t
(x, t) ≤ ∆w(x, t),

2A proof by contradiction of this: If no such η exists, then there exists a sequence (xi, ti)

with xi ∈ Mn and ti ↘ t0 such that wϵ(xi, ti) ≤ −C + 1
i
. Since Mn is compact, we may

pass to a subsequence so that xi → x∞ ∈ Mn. By the continuity of wϵ, we have wϵ(x∞, t0) =
limi→∞ wϵ(xi, ti) ≤ −C, which is a contradiction.
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and if w(x, 0) ≤ C for all x ∈Mn, where C is some constant, then6196

(14.40) w(x, t) ≤ C for all x ∈Mn, t ∈ [0, T ).

Exercise 14.2 (Parabolic maximum principles for linear heat-type equa-6197

tions). (1) Prove that if w :Mn×[0, T )→ R, whereMn is compact, satisfies6198

(14.41)
∂w

∂t
(x, t) ≥ ∆w(x, t) + cw(x, t),

and if w(x, 0) ≥ −C for all x ∈Mn, where c and C are constants, then6199

(14.42) w(x, t) ≥ −Cect for all x ∈Mn, t ∈ [0, T ).

(2) Similarly, if6200

(14.43)
∂w

∂t
(x, t) ≤ ∆w(x, t) + cw(x, t),

and if w(·, 0) ≤ C, then6201

(14.44) w(x, t) ≤ Cect.

14.8. Estimating the curvature from above under the6202

normalized Ricci flow6203

14.8.1. The difficulty in obtaining an upper bound for the cur-
vature. Unlike the case of a lower bound, an effective upper bound for
R(x, t)− r under the normalized Ricci flow on a 2-sphere is not as obvious.
Indeed, let

R(x, t) := R(x, t)− r
be the scalar curvature minus its average. Then (14.30) is the reaction-6204

diffusion equation6205

(14.45)

(
∂

∂t
−∆

)
R = R

2
+ rR.

The associated ODE to the PDE (14.45) is obtained by dropping the6206

Laplacian term; this yields the equation:6207

(14.46)
d

dt
S = S2 + rS.

The solution to this ODE with initial data S(0) = S0 ̸= 0 is given by6208

(14.47) S(t) =
r

1− (1− r/S0)ert
.

Observe that if S0 > 0, then

S(t)→∞ as t→ T,

where T := −1
r ln(1 − r/S0). That is, we have finite-time blow up of the6209

solution to the ODE.6210
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The statement of the parabolic maximum principle for reaction-diffusion6211

equations with nonlinear reaction terms is as follows.6212

Lemma 14.9. Suppose that g(t), t ∈ [0, T ), is a smooth 1-parameter family6213

of Riemannian metrics on a closed differentiable manifold Mn. Let u :6214

Mn × [0, T )→ R be a supersolution to6215

(14.48)
∂u

∂t
(x, t) = ∆g(t)u(x, t) + F (u(x, t)),

where F : R→ R is some smooth one-variable function. Let U0 ∈ R satisfy6216

U0 ≥ maxMn u(·, 0). Let U(t), t ∈ T ′, be the solution the associated ODE6217

(14.49)
dU

dt
(t) = F (U(t)), U(0) = U0.

Then we have that6218

(14.50) u(x, t) ≤ U(t)

for all x ∈Mn and t ∈ [0,min{T, T ′}).6219

As a consequence of this parabolic maximum principle, by choosing S0 :=6220

maxM2 R(·, 0), we obtain the upper estimate for the scalar curvature:6221

(14.51) R(x, t)− r ≤ S(t)

for all x ∈ M2 and t ∈ [0,min{T, T ′}). See Figure 14.8.1. Unfortunately,6222

T ′ <∞ provided g0 does not have constant curvature (which means S0 > 0),6223

so we cannot get an upper bound for all time for R. We need another6224

method.6225

R(x, t)− r

t

Figure 14.8.1. The lower bound (14.38) for R(x, t)− r is represented
by the red curve. The blue curve represents the upper bound given by
the solution (14.47) to the associated ODE.
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14.8.2. A key tool: The potential function. Necessity is the mother of
invention. A simple, but not obvious, method to obtain an effective upper
bound for R(x, t)− r proceeds as follows. We carry this out in a few steps.
Firstly, by definition, ∫

M2

R(x, t)dµ(x, t) = 0

for each time t. Because of this, by Corollary 11.19 there exists a function6226

f(t) :M2 → R satisfying the Poisson-type equation:6227

(14.52) ∆g(t)f(t) = R(t)

on M2. Note that each f(t) is determined up to an additive constant. This6228

is because any harmonic function on M2 is a constant (see Lemma 11.13).6229

We call f(t) the potential function.6230

Recall that the curvature is defined in terms of the second derivatives of6231

the metric. On the other hand, from (14.8) we saw that the scalar curvature6232

of a conformally related metric may be expressed in terms of the Laplacian6233

of the conformal factor. So, by analogy, the consideration of the potential6234

function seems to be a reasonable thing to do. Let us now see if it helps.6235

14.8.3. Estimates for the potential function and its derivatives.
Secondly, because we are in dimension 2, using Lemma 11.2 we calculate
that

∂

∂t

(
∆g(t)f(t)

)
=

∂

∂t

(
e−2u(t)∆g0f(t)

)
(14.53)

= −2∂u
∂t

(t)e−2u(t)∆g0f(t) + e−2u(t)∆g0

(
∂f

∂t

)
= R(t)∆g(t)f(t) + ∆g(t)

(
∂f

∂t

)
.

Thus, by taking the time-derivative of (14.52), we obtain

R(t)∆g(t)f(t) + ∆g(t)

(
∂f

∂t

)
= ∆R+R

2
+ rR.

In view of (14.52), we can rewrite this equation as

∆g(t)

(
∂f

∂t

)
= ∆

(
∆g(t)f(t)

)
+ r∆g(t)f(t).

Again, since any harmonic function on M is a constant, this implies that
there exist constants C(t) such that

∂f

∂t
(t) = ∆g(t)f(t) + rf(t) + C(t).

https://en.wikipedia.org/wiki/Poisson%27s_equation
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In the definition of f(t) we can choose f(t) so that these constants C(t) are6236

identically zero, that is, so that6237

(14.54)
∂f

∂t
(t) = ∆g(t)f(t) + rf(t).

For simplicity, we write this equation as:6238

Lemma 14.10. Under the normalized Ricci flow on a closed surface, the6239

potential function f satisfies6240

(14.55)

(
∂

∂t
−∆

)
f = rf.

If, given a family of metrics g(t), we consider the equation6241

(14.56)

(
∂

∂t
−∆g(t)

)
w(t) = rw(t),

then we have an equation which is linear in w. It is in this sense that (14.54)6242

is a linear heat-type equation. On the other hand, f(t) itself does not depend6243

linearly on g(t).6244

Thirdly, it is useful to consider the gradient of f . Let g(t)∗ = ⟨·, ·⟩ denote
the inner product on T ∗M dual to the metric g(t). Then ∂tg(t)

∗ = Rg(t)∗.
So we compute that

∂

∂t
∥∇f(t)∥2g(t) =

∂

∂t

(
g(t)∗

(
df(t), df(t)

))
(14.57)

= Rg(t)∗
(
df(t), df(t)

)
+ 2
〈
∂t
(
df(t)

)
, df(t)

〉
.

Now,

∂t
(
df(t)

)
= d
(
∂tf(t)

)
= d(∆f + rf)(14.58)

= ∆df − Ric(df) + rdf

= ∆df − 1

2
Rdf + rdf,

where Ric : T ∗M → T ∗M in the third line, where we used Lemma 11.5 to
obtain the third equality, and where we used that Ric = 1

2Rg from n = 2 in
the fourth line. Thus, by applying (14.58) to (14.57), we have that

∂

∂t
∥∇f(t)∥2g(t) = R∥∇f(t)∥2g(t) + 2⟨∆df, df⟩(14.59)

−R∥∇f(t)∥2g(t) + 2r∥∇f(t)∥2g(t)
= 2⟨∆df, df⟩+ r∥∇f(t)∥2g(t)
= ∆g(t)∥∇f(t)∥2g(t) − 2∥∇2f(t)∥2g(t) + r∥∇f(t)∥2g(t).

For simplicity, we write this equation as:6245
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Lemma 14.11. Under the normalized Ricci flow on a closed surface, the6246

norm squared of the gradient of the potential function satisfies6247

(14.60)

(
∂

∂t
−∆

)
∥∇f∥2 = −2∥∇2f∥2 + r∥∇f∥2.

We remark that the general formula for computing the heat operator6248

applied to ∥∇v∥2 for a function v = v(x, t) is given by (14.77) below. The6249

“good” Hessian norm squared term is common to such calculations.6250

Fourthly, from the point of view of bounding the quantity by the para-6251

bolic maximum principle, the term −2∥∇2f∥2 is a good term. In fact, we6252

have6253

(14.61) ∥∇2f∥2 ≥ 1

2

(
traceg(∇2f)

)2
=

1

2
(∆f)2 = R

2
.

Because of this good term, the heat-type equation (14.60) for ∥∇f∥2 is useful6254

for controlling the bad term R
2
on the right-hand side of the equation (14.45)6255

for R. So we consider the sum6256

(14.62) h := R+ ∥∇f∥2.
By (14.60) and (14.45), we have(

∂

∂t
−∆

)
h = R

2
+ rR− 2∥∇2f∥2 + r∥∇f∥2(14.63)

= −2
∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2 + rh.

To see the last equality, we calculate using ∥g∥2 = n = 2 that∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2 = 1

2
R

2
+ ∥∇2f∥2 −R∆f = ∥∇2f∥2 − 1

2
R

2
.

Consequently,6257

Lemma 14.12. Under the normalized Ricci flow on a closed surface,6258

(14.64)

(
∂

∂t
−∆

)
h ≤ rh.

By applying the parabolic maximum principle (Exercise 14.2(2)), we6259

have6260

(14.65) h(x, t) ≤ Cert,
where C := maxy∈M2 h(y, 0). In particular, since R ≤ h, we have6261

(14.66) R(x, t) ≤ Cert.
To wit, in order to estimate the curvature R, we estimated the larger quan-6262

tity h since it satisfies a better heat-type equation.6263
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On the other hand, by (14.38) we have6264

(14.67) R(x, t) ≥ −Cert

for some constant C. Thus:6265

Lemma 14.13 (Curvature estimate under the normalized Ricci flow). Un-6266

der the normalized Ricci flow on a closed surface, there exists a constant C6267

depending only on the initial metric g0 such that6268

(14.68)
∣∣R∣∣(x, t) ≤ Cert

for all x ∈ M2 and t ∈ [0, T ). In particular, if the genus g > 1, or equiva-6269

lently χ(M2) < 0, so that r < 0, we have the exponential decay of |R|.6270

14.9. Uniform convergence of the metric as t→ T6271

We now show that the exponential decay estimate in Lemma 14.13 is suffi-
cient to prove the uniform convergence of g(t) as t→ T . As in (14.1), define
u(t) :M2 → R, t ∈ [0, T ), by

g(t) =: e2u(t)g0.

Then, by (14.15), the conformal factor u satisfies6272

(14.69)
∂u

∂t
= −1

2
R.

Integrating this, we see that for each x ∈M2 and t1 < t2,

u(x, t1)− u(x, t2) =
1

2

∫ t2

t1

R(x, t)dt.

Hence, using r < 0, we compute that

|u(x, t1)− u(x, t2)| ≤
1

2

∫ t2

t1

∣∣R∣∣(x, t)dt ≤ C ∫ t2

t1

ertdt ≤ C

|r|
ert1

for some constant C. Note that C is independent of x ∈M2 and t2 ∈ (t1, T ).6273

As a consequence, we have:6274

(1) There exists a constant C such that6275

(14.70) |u|(x, t) ≤ C

for all x ∈M2 and t ∈ [0, T ).6276

(2) For each x ∈M2, the limit6277

(14.71) lim
t→T

u(x, t) =: uT (x)

exists. This statement is true even if T = ∞. (We will prove later that6278

T =∞.)6279
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The proof of (2) is as follows. Having seen the proof of (2), we leave the6280

proof of (1) as an exercise. Choose any sequence ti → T . We have for any6281

i < j that6282

(14.72) |u(x, ti)− u(x, tj)| ≤
C

|r|
(erti − ertj ) ≤ C

|r|
(erti − erT ),

where erT := 0 if T =∞. This shows that {u(x, ti)}∞i=1 is a Cauchy sequence.
Since every Cauchy sequence of real numbers converges, we have that

lim
i→∞

u(x, ti) =: uT (x)

exists for each x ∈M2. Now, for any t ∈ (ti, T ) and x ∈M2, we have6283

(14.73) |u(x, ti)− u(x, t)| ≤
C

|r|
(erti − erT ).

This implies that the convergence

lim
t→T

u(x, t) =: uT (x)

is uniform. By definition, this means that for any ϵ > 0, there exists tϵ < T
such that for all x ∈M2 and t ∈ (tϵ, T ) we have

|u(x, t)− uT (x)| < ϵ.

Note that we have not yet established any regularity properties of uT such6284

as continuity or higher differentiability. This will be a goal of the following6285

sections.6286

In any case, as a consequence of (14.70) in (1), we have6287

(14.74) e−2Cg0 ≤ g(t) ≤ e2Cg0

for all t ∈ [0, T ). In general, given two metrics g and g′, we say that g ≤ g′6288

if g′ − g is a positive semi-definite symmetric 2-tensor. Hence, if α is any6289

k-tensor, then6290

(14.75) e−kC∥α∥g0 ≤ ∥α∥g(t) ≤ ekC∥α∥g0
for all t ∈ [0, T ). As a consequence of (2) and (1), we have that6291

(14.76) lim
t→T
∥g(t)− gT ∥g0 = 0,

where

gT := e2uT g0.

14.10. Estimating the gradient of the curvature6292

Similarly to the previous chapter on the curve shortening flow, in view of the6293

Arzelà–Ascoli Theorem, we need to estimate the derivatives of the curvature6294

of our solution to the normalized Ricci flow.6295
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14.10.1. Estimating the gradient of the curvature. In general, for a
time-dependent function v(t) and under the normalized Ricci flow on sur-
faces, using the same method as that to obtain (14.57) and (14.59), we
compute that (

∂

∂t
−∆

)
∥∇v(t)∥2g(t) = −2∥∇

2v∥2 − r∥∇v∥2(14.77)

+ 2d

((
∂

∂t
−∆

)
v

)
· dv.

By applying this formula to v(t) = R(t), we obtain(
∂

∂t
−∆

)
∥∇R∥2 = −2∥∇2R∥2 − r∥∇R∥2 + 2d(R2) ·dR− 2rdR ·dR

= −2∥∇2R∥2 + 4R∥∇R∥2 − 3r∥∇R∥2.

We rewrite this as6296

(14.78)

(
∂

∂t
−∆

)
∥∇R∥2 = −2∥∇2R∥2 + 4R∥∇R∥2 + r∥∇R∥2.

Assume that χ(M2) < 0. Since R ≤ Cert and r < 0, there exists t0 <∞6297

such that R(x, t) ≤ −1
8r for all t ≥ t0 and x ∈ M2. We then obtain for6298

t ≥ t0 that6299

(14.79)

(
∂

∂t
−∆

)
∥∇R∥2 ≤ −2∥∇2R∥2 + r

2
∥∇R∥2 ≤ r

2
∥∇R∥2.

Hence, by Exercise 14.2(2) on the parabolic maximum principle, we have:6300

Lemma 14.14. Under the normalized Ricci flow on a closed surface M2
6301

with χ(M2) < 0, there exists a constant C depending only on the initial6302

metric g0 such that6303

(14.80) ∥∇R∥2(x, t) ≤ Ce
r
2
t,

where the norm is with respect to g(t).6304

14.10.2. Estimating the higher derivatives of curvature. For the6305

higher-order derivatives of R, one can prove the following.6306

Lemma 14.15 (Higher derivatives of curvature estimate). Under the nor-6307

malized Ricci flow on a closed surface M2 with χ(M2) < 0 and for each6308

positive integer k, there exists a positive constants Ck depending only on the6309

initial metric g0 and k such that6310

(14.81) ∥∇kR∥2(x, t) ≤ Cke
r
2
t

for all x ∈M2 and t ∈ [0, T ).6311
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As an example of how the proof of the higher derivative of curvature
estimates proceed, we sketch the proof of the second derivative estimate;
i.e., the case where k = 2. Details are given in Chapter 5 of [CK04]. By
[CK04, Lemma 5.25], we have

∂

∂t
∥∇2R∥2 = ∆∥∇2R∥2 − 2∥∇3R∥2 + (2R− 4r) ∥∇2R∥2

+ 2R (∆R)2 + 2
〈
∇R,∇ |∇R|2

〉
.

Now let
φ := ∥∇2R∥2 − 3r∥∇R∥2.

Then there exists a constant C depending only on g(0) such that (see the
proof of Corollary 5.26 in [CK04])

∂φ

∂t
≤ ∆φ+

2r

3
φ+ Cert.

In particular, for any (x, t) such that φ(x, t) ≥ −6C
r ert, we have

∂φ

∂t
(x, t) ≤ ∆φ(x, t) +

r

2
φ(x, t).

By (a slight variant of) the parabolic maximum principle, we conclude that6312

(14.82) ∥∇2R∥2 ≤ φ ≤ Ce
r
2
t

for some constant C depending only on g(0).6313

14.11. Long-time existence and convergence when the genus6314

g > 16315

Given the curvature and its derivatives estimates of the previous section,6316

we are now in position to prove the long-time existence and convergence6317

to constant negative curvature of the normalized Ricci flow with any initial6318

metric on a surface with genus g > 1.6319

14.11.1. Arzelà–Ascoli Theorem and equicontinuous families of
functions. Let (M,d) be a metric space. Recall that a family F of real-
valued functions onM is equicontinuous if for any ε > 0 there exists δ > 0
such that for all ϕ ∈ F and all x, y ∈M , if d(x, y) < δ, then

|ϕ(x)− ϕ(y)| < ε.

Example 14.16. Let (Mn, g) be a Riemannian manifold. Suppose that F6320

is a family of functions on Mn that are uniformly Lipschitz; that is, there6321

exists a positive constant C such that for all ϕ ∈ F and all x, y ∈Mn,6322

(14.83) |ϕ(x)− ϕ(y)| ≤ Cd(x, y).
Then F is an equicontinuous family. Indeed, given ε > 0, we may let δ = ε

C6323

for the definition of equicontinuity.6324
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In particular, if F is a family of differentiable functions on Mn that6325

satisfy a uniform derivative bound, i.e., for all ϕ ∈ F and x ∈Mn,6326

(14.84) ∥dϕx∥ ≤ C,
then F is an equicontinuous family.6327

Now suppose that ϕ : Mn → R is twice differentiable. We have that its6328

derivative is a real-valued function on the tangent bundle: dϕ : TM → R.6329

Observe that if ∥∇dϕ∥ ≤ C on Mn, then we have that the derivative of the6330

restricted function dϕ : SM → R is bounded by C, where SM denotes the6331

unit tangent bundle. Thus, if F is a family of twice-differentiable functions6332

on Mn such that ∥∇dϕ∥ ≤ C for all ϕ ∈ F for some constant C, then the6333

family6334

(14.85) G := {dϕ : ϕ ∈ F}
of functions on SM is equicontinuous.6335

We have the following fundamental result in analysis; see e.g. [Rud76,6336

Theorem 7.25].6337

Theorem 14.17 (Arzelà and Ascoli). Suppose that (M,d) is a compact6338

metric space. If {ϕi} is a uniformly bounded and equicontinuous sequence6339

of real-valued functions on M , then there exists a subsequence {ϕij} that6340

converges uniformly to a continuous function ϕ∞ on M .6341

We also have the following regarding the uniform convergence of deriva-6342

tives; see e.g. [Rud76, Theorem 7.17] for the 1-dimensional case.6343

Theorem 14.18. Let (Mn, g) be a Riemannian manifold and let {ϕi} be6344

a sequence of real-valued functions on Mn. Suppose that {ϕi} converges6345

uniformly to a function ϕ∞ and that {dϕi} converges uniformly to a 1-form6346

ψ∞. Then ϕ∞ is differentiable and dϕ∞ = ψ∞.6347

By combining the preceding theorem with Theorem 14.17, we obtain:6348

Theorem 14.19. Let (Mn, g) be a Riemannian manifold and let {ϕi} be a6349

sequence of real-valued functions on Mn with the property that the functions6350

and their first and second derivatives are uniformly bounded. Then there6351

exists a subsequence {ϕij} such that {ϕij} converges uniformly to a contin-6352

uously differentiable function ϕ∞ on Mn and {dϕij} converges uniformly to6353

the function dϕ∞ on SM .6354

We remark that the subsequence {dϕij} converging uniformly to the6355

function dϕ∞ on SM implies that {dϕij} converges uniformly to dϕ∞ as6356

sections of the cotangent bundle T ∗M ; i.e., as maps from M to T ∗M whose6357

composition with the projection map T ∗M → Mn is the identity map of6358

Mn.6359
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We also recall the following result.6360

Lemma 14.20. Let ϕt : X → R, t ∈ (0, T ), where T ∈ (0,∞], be a family6361

of functions in a set X with the property that6362

(14.86) |∂tϕt(x)| ≤ α(t)

for all x ∈ X and t ∈ [0, T ), where α : [0, T )→ R+ is a function satisfying6363

(14.87)

∫ T

0
α(t)dt <∞.

Then there exists a function ϕT : X → R such that ϕt converges uniformly6364

to ϕT as t → T ; that is, for any ε > 0, there exists δ > 0 such that for all6365

x ∈ X and t ∈ (T − δ, T ), we have6366

(14.88) |ϕt(x)− ϕT (x)| < ε.

Proof. For any 0 ≤ t1 < t2 < T and x ∈ X, we have

|ϕt1(x)− ϕt2(x)| ≤
∫ t2

t1

|∂tϕt(x)|dt ≤
∫ t2

t1

α(t)dt.

Now let ε > 0. By hypothesis, there exists δ > 0 such that
∫ T
t1
α(t)dt < ε

provided t1 ≥ T − δ. Thus, for any T − δ ≤ t1 < t2 < T and x ∈ X, we have

|ϕt1(x)− ϕt2(x)| < ε.

We leave it as an exercise to deduce the lemma. □6367

14.11.2. Convergence of the metrics g(t) in each Ck-norm to a6368

smooth metric gT . We now proceed to prove that gT = limt→T g(t) is6369

a C∞ Riemannian metric on M2. We start by estimating the first spatial6370

derivative of u. We have6371

(14.89)
∂

∂t
du(x, t) = −1

2
dR(x, t)

as an equation for 1-forms. Thus,

du(x, t1)− du(x, t2) =
1

2

∫ t2

t1

dR(x, t)dt ∈ T ∗
xM.

For the right-hand side, the integration of the vector-valued function t 7→
dR(x, t) from [0, T ) to T ∗

xM is defined in the usual way. Taking norms, we



D
R
A
FT

14.11. Convergence when the genus g > 1 375

obtain the estimate

∥du(x, t1)− du(x, t2)∥g0 ≤
1

2

∫ t2

t1

∥dR(x, t)∥g0dt

≤ C
∫ t2

t1

e
r
4
tdt

≤ 4C

|r|
(
e

r
4
t1 − e

r
4
t2
)
.

From this it follows that the limit6372

(14.90) lim
t→T

du(x, t) =: vT (x)

exists and that the convergence is uniform. By Theorem 14.18, uT is differ-6373

entiable and duT = vT . In fact, in a similar vein one can prove that for all6374

k ≥ 1, uT is k-times differentiable and ∇ku(t) converges uniformly to ∇kuT6375

in the bundle of k-tensors ⊗kT ∗M . Hence, gT = e2uT g0 is a C∞ metric.6376

Now, if T < ∞, then we may continue the solution and there exists6377

ϵ > 0 and metrics g(t), t ∈ [T, T + ϵ), solving the normalized Ricci flow6378

(14.14) with g(T ) = gT . As such the two families of metrics {g(t)}t∈[0,T )6379

and {g(t)}t∈[T,T+ϵ) combine to form a solution to (14.14) on the time interval6380

[0, T+ϵ) with g(0) = g0. This contradicts T being the maximal time. Hence,6381

we conclude that T =∞.6382

Now that we know that T =∞, we have shown above that g∞ is a C∞
6383

metric on M2. Furthermore, since ∇ku(t) converges uniformly to ∇ku∞ as6384

t → ∞, we have that R(t) converges uniformly to R(g∞). By the estimate6385

(14.68), we conclude that R(g∞) ≡ r. That is, g∞ is a constant negative6386

scalar curvature r metric. In summary, we have proved that for any initial6387

metric on a surface of genus greater than one (i.e., negative Euler charac-6388

teristic), the normalized Ricci flow exists for all positive time and converges6389

to a constant negative curvature metric as time approaches infinity. This6390

proves Theorem 14.21 below in the case where the genus g > 1; i.e., the6391

Euler characteristic of M2 is negative.6392

Using similar techniques, one can prove that for any initial metric g06393

on a closed oriented surface with zero Euler characteristic, i.e., on a torus,6394

a unique solution to the normalized Ricci flow exists for all t ∈ [0,∞) and6395

that g(t) converges to a C∞ metric g∞ as t → ∞, where the curvature of6396

g∞ is identically zero. For details in this case, the reader may consult the6397

original [Ham88] or Chapter 5 of the expository [CK04].6398

The statement of the global existence and convergence result for all6399

closed surfaces is as follows.6400

Theorem 14.21 (Uniformization theorem by Ricci flow). Let (M2, g0) be6401

a closed oriented Riemannian surface. Then there exists a solution g(t) to6402
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the normalized Ricci flow for all time t ∈ [0,∞) with g(0) = g0. As t→∞,6403

g(t) converges in each Ck-norm to a C∞ metric g∞ with constant scalar6404

curvature equal to 4πχ(M2)
Area(g0)

.6405

In the next section we consider the proof of this theorem in the special6406

case where the Euler characteristic χ of M2 is positive, having covered the6407

case where χ(M2) < 0 above (references containing the χ(M2) = 0 are given6408

above).6409

14.12. The Ricci flow on the 2-sphere6410

In this section and the next, we present the essential details of the proof6411

of the convergence of the Ricci flow on closed surfaces with positive Euler6412

characteristic. Since we assume that our surface is oriented, this means that6413

our surface is diffeomorphic to the 2-sphere S2.6414

14.12.1. Using monotone quantities to find more monotone quan-6415

tities. Recall from (14.63) that, under the normalized Ricci flow on any6416

closed surface M2, the quantity h = R+ ∥∇f∥2, where R = R− r, satisfies6417

the evolution equation6418

(14.91)

(
∂

∂t
−∆

)
h = −2

∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2 + rh ≤ rh.

This implies that(
∂

∂t
−∆

)
(e−rth) = −2e−rt

∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2 ≤ 0.

So we have that e−rth is a monotone quantity in the sense that it is a subso-6419

lution to the heat equation and hence its spatial maximum is a nonincreasing6420

function of time.6421

14.12.1.1. The trace-free part β of the Hessian of the potential function f .6422

Motivated by Hamilton’s idea that quantities that arise in the evolution6423

equations of monotone quantities may also behave nicely under the normal-6424

ized Ricci flow, one considers the symmetric 2-tensor6425

(14.92) β := −1

2
Rg +∇2f,

which by (14.91) has the property that(
∂

∂t
−∆

)
h = −2 ∥β∥2 + rh.

We also note that β is trace-free, that is:6426

(14.93) traceg(β) = −R+∆f = 0.
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14.12.1.2. Characterizing when β vanishes. Observe that R vanishes if and6427

only if R ≡ r, that is, g has constant curvature. Note also that if R vanishes,6428

then f is constant, so that then β also vanishes.6429

Lemma 14.22. Conversely, if β vanishes for some closed oriented Rie-6430

mannian surface (M2, g), then g has constant curvature.6431

Proof. Suppose that β = 0. Then6432

(14.94) L∇fg = 2∇2f = Rg.

Case 1: χ ≤ 0. Here we have that r ≤ 0, which is a condition we will
take advantage of. Taking the divergence of (14.94), we have

dR = div(Rg)

= 2 div(∇2f)

= 2d(∆f) + 2Ric(df)

= 2dR+Rdf.

Therefore,6433

(14.95) dR+Rdf = 0.

Taking a second divergence yields

0 = ∆R+ dR · df +R∆f

= ∆R+ dR · df +RR

= ∆R+ dR · df +R
2
+ rR.

Since R is a smooth function, and hence is continuous, and since M2 is
compact, there exists a point x0 ∈ M2 at which R attains its minimum:
R(x0) = minx∈M2 R(x). We have

∆R(x0) ≥ 0, dR(x0) = 0⃗.

Therefore,

R(x0)
2 + rR(x0) ≤ 0.

Since r ≤ 0, if R(x0) < 0, then R(x0)
2 > 0 and rR(x0) ≥ 0 and thus we6434

have a contradiction. Therefore, R(x0) ≥ 0. Finally, since
∫
M2 Rdµ = 0, we6435

conclude that R ≡ 0 on all of M2.6436

Case 2: χ > 0. In this case, by the classification of surfaces (Theorem6437

8.11), we have that M2 is diffeomorphic to the 2-sphere S2.6438

By (14.94) and (12.26), we have that ∇f is a conformal vector field.
Hence we may apply the Kazdan–Warner identity, i.e., Theorem 12.7, to
obtain

0 =

∫
M2

⟨∇gR,∇f⟩g dµg.
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Integrating by parts, we obtain

0 = −
∫
M2

R∆gf dµg = −
∫
M2

R∆gf dµg = −
∫
M2

R
2
dµg.

We again conclude that R ≡ 0 on M2. □6439

14.12.1.3. The evolution of β and its norm. Since we know the evolution6440

equations for R, g, and f , we can compute the evolution of β. One catch6441

is that we also have to calculate the evolution of the Hessian operator ∇2
6442

since it depends on g(t). In any case, one arrives at the following formula:6443

(14.96)

(
∂

∂t
−∆

)
β = (r − 2R)β.

We refer to the read to [CK04] for an exposition of the details of this6444

calculation of Hamilton.6445

In general, for any symmetric 2-tensor γ(t), under the normalized Ricci6446

flow on surfaces we have6447

(14.97)

(
∂

∂t
−∆

)
∥γ(t)∥2g(t) = −2∥∇γ∥

2 + 2R∥γ∥2 + 2

(
∂

∂t
−∆

)
γ · γ.

Hence, we obtain from (14.96) that6448

(14.98)

(
∂

∂t
−∆

)
∥β∥2 = −2∥∇β∥2 − 2R∥β∥2.

14.12.1.4. For any metric on S2, a conformally equivalent metric has posi-
tive curvature. Now assume that M2 is diffeomorphic to the 2-sphere. Let
g0 be a Riemannian metric on M2. Recall from (8.46) that if g1 = e2ug0,
then

R1 = e−2u
(
R0 − 2∆0u

)
.

Let r be the average scalar curvature of g0. Recall by Corollary 11.19,
which is a consequence of the Hodge theorem, that since

∫
M (R0−r)dµ0 = 0,

there exists a function u :M2 → R satisfying the Poisson equation

2∆0u = R0 − r.

For this choice of u, we have

R1 = e−2ur > 0.

14.12.1.5. A uniform lower bound for the scalar curvature. We consider the
normalized Ricci flow g(t) starting from the metric g1. Using the techniques
in §14.11 (which are for the case where χ(M2) < 0), one can show for the
case where χ(M2) > 0 that g(t) exists for all time t ∈ [0,∞). By the
parabolic maximum principle applied to the equation (14.29), we have that

R(t) > 0
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for all t ≥ 0. Hamilton proved the following apriori estimate.6449

Proposition 14.23. Under the normalized Ricci flow on a closed surface6450

with positive curvature, there exists a constant c such that6451

(14.99) R(x, t) ≥ c > 0

for all x ∈M2 and t ∈ [0,∞).6452

We will finish the proof of this proposition in §14.13.6.4.6453

The point of the proposition is that the positive lower bound for the
scalar curvature is uniform. That is, the proposition precludes the scalar
curvature from decaying to zero as time tends to infinity. Another important
significance of this estimate is that by (14.98) it implies that(

∂

∂t
−∆

)
∥β∥2 ≤ −2c∥β∥2.

Hence, by the parabolic maximum principle (Exercise 14.2(2)), there exists6454

a constant C such that6455

(14.100) ∥β∥2(x, t) ≤ Ce−2ct

for all x ∈M2 and t ∈ [0,∞), where c > 0.6456

14.12.2. The modified Ricci flow. In Riemannian geometry, isometric
metrics are considered to be geometrically the same. So we first discuss the
effect of pulling back by diffeomorphisms on a 1-parameter family of metrics.
Let φt :M

2 →M2, t ∈ [0,∞), be a 1-parameter family of diffeomorphisms.
Let Vt be the 1-parameter family of vector fields generated by φt,
that is, by definition,

∂

∂t
φt(x) =: Vt(φt(x)) = (Vt ◦ φt)(x).

Let g(t), t ∈ [0,∞), be a solution to the normalized Ricci flow on M2. The6457

1-parameter family of pullback metrics6458

(14.101) g̃(t) := φ∗
t g(t)

are by definition given by (see §6.6.1)6459

(14.102) g̃(t)(V,W ) = g(t)
(
dφt(V ), dφt(W )

)
.

Also by definition, g̃(t) is isometric to g(t). Thus, geometrically, the family6460

g̃(t) is indistinguishable from g(t).6461
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Using the product rule and the consequence of the definition of the Lie
derivative (6.91), we compute that

∂

∂t
g̃(t) =

∂

∂t

(
φ∗
t g(t)

)
(14.103)

= φ∗
t

(
∂

∂t
g(t)

)
+ Ld(φ−1

t )(∂tφt)
g̃(t)

= −Rg̃(t)g̃(t) + Ld(φ−1
t )(Vt)

g̃(t),

where we used that φ∗
t (Rg(t)g(t)) = Rg̃(t)g̃(t).6462

Define6463

(14.104) f̃(t) := f(t) ◦ φt.

From now on, we choose the diffeomorphisms φt to be defined by6464

(14.105) Vt = ∇f(t) and φ0 = idM2 ,

so that6465

(14.106)
∂

∂t
φt(x) = (∇f(t) ◦ φt)(x).

Let ∇̃ denote the gradient with respect to g̃(t). By (14.103), we then have

∂

∂t
g̃(t) = −Rg̃(t)g̃(t) + Ld(φ−1

t )(∇f(t))g̃(t)(14.107)

= −Rg̃(t)g̃(t) + L∇̃f̃(t)
g̃(t)

= −Rg̃(t)g̃(t) + 2∇̃2f̃(t)

=: 2β̃(t),

where to obtain the second equality we used that6466

(14.108) ∇̃f̃(t) = ∇φ∗
t g(t)

(f(t) ◦ φt) = φ∗
t (∇g(t)f(t)) = d(φ−1

t )(∇f(t)).

We calculate that

∆g̃(t)f̃(t) = ∆φ∗
t g(t)

(f ◦ φt) = (∆g(t)f(t)) ◦ φt = (Rg(t) − r) ◦ φt.

Therefore,6467

(14.109) ∆g̃(t)f̃(t) = Rg̃(t) := Rg̃(t) − r

since r = r◦φt follows from r being constant and since, by g̃(t) = φ∗
t g(t), we6468

have Rg̃(t) = Rg(t) ◦ φt. Equation (14.109) is analogous to (14.52). Namely,6469

f̃(t) is the potential function for g̃(t).6470

Observe that6471

(14.110) traceg̃(t)
(
β̃(t)

)
= traceg̃(t)

(
∂

∂t
g̃(t)

)
= −2Rg̃(t) + 2∆̃f̃(t) = 0.
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Therefore, the area form of g̃(t) is independent of time under the modified6472

Ricci flow:6473

(14.111)
∂

∂t
dµg̃(t) = 0.

This implies that Area(g̃(t)) is constant, which we already know from the6474

area of g(t) being constant and g̃(t) = φ∗
t g(t).6475

We now calculate the evolution of the potential function for g̃(t):

∂f̃

∂t
(t) =

∂

∂t
(f(t) ◦ φt)

=
∂f

∂t
(t) ◦ φt + df(t)

(
∂

∂t
φt

)
=
(
∆g(t)f(t) + rf(t)

)
◦ φt + df(t)

(
∇g(t)f(t) ◦ φt

)
= ∆φ∗

t g(t)
(f(t) ◦ φt) + rf(t) ◦ φt + |∇g(t)f(t)|2 ◦ φt.

That is,6476

(14.112)
∂f̃

∂t
(t) = ∆g̃(t)f̃(t) + ∥∇̃f̃(t)∥2g̃(t) + rf̃(t)

This is analogous to (14.54), except that we have a gradient term. Observe6477

that this gradient term may be rewritten as ∥∇̃f̃(t)∥2g̃(t) = L∇̃f̃(t)
f̃ .6478

14.12.3. Convergence to constant curvature for the normalized6479

Ricci flow on S2. We can now begin to finish off the amazing proof of6480

Hamilton. The long-time existence of the solution of the normalized Ricci6481

flow on S2 holds for the following reasons. Firstly, by (14.68), we have that6482

|R(x, t)− r| ≤ Cert for all x ∈M2 and t ∈ [0, T ) (Proposition 14.23 gives a6483

much better lower bound for the scalar curvature). Secondly, by using this6484

and similarly to Lemma 14.15, we can obtain time-dependent estimates for6485

all derivatives of the curvature. Thirdly, similarly to §14.11, we can deduce6486

from this that a unique solution g(t) to the normalized Ricci flow on S2
6487

exists for all time t ∈ [0,∞).6488

Now recall from (14.100) and (14.92) that6489

(14.113)

∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2
g(t)

(x, t) ≤ Ce−2ct.

On the other hand, by (14.107),

2β̃(t) = −Rg̃(t)g̃(t) + 2∇̃2f̃(t) =

(
−1

2
Rg +∇2f

)
◦ φt.
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Therefore,6490

(14.114)

∥∥∥∥ ∂∂t g̃(t)
∥∥∥∥2
g̃(t)

=
∥∥∥−Rg̃(t)g̃(t) + 2∇̃2f̃(t)

∥∥∥2
g̃(t)

(x, t) ≤ Ce−2ct.

One can show, analogously to Lemma 14.15, that for each positive inte-6491

ger k there exists a constant Ck such that6492

(14.115) ∥∇̃kβ̃(t)∥g̃(t) ≤ Ck.

Similarly to §14.11, we can deduce from this that the solution g̃(t) to the6493

modified Ricci flow exists for all time t ∈ [0,∞) and that the metrics g̃(t)6494

converge as t → ∞ to a smooth Riemannian metric g̃∞. Furthermore, this6495

metric satisfies6496

(14.116) β̃∞ := −1

2
Rg̃∞ g̃∞ + ∇̃2f̃∞ = 0,

where f̃∞ satisfies6497

(14.117) ∆g̃∞ f̃∞ = Rg̃∞ − r.

Now, (14.116) implies that the vector field ∇̃f̃∞ is a conformal vector
field with respect to the metric g̃∞. Thus we may apply the Kazdan–Warner
identity (Theorem 12.7) to obtain

0 =

∫
M2

〈
∇̃Rg̃∞ , ∇̃f̃∞

〉
g̃∞
dµg̃∞

=

∫
M2

Rg̃∞∆g̃∞ f̃∞dµg̃∞

=

∫
M2

Rg̃∞(Rg̃∞ − r)dµg̃∞

=

∫
M2

(Rg̃∞ − r)2dµg̃∞ .

We conclude that6498

(14.118) Rg̃∞ ≡ r.

Moreover, since the convergence of g̃(t) to g̃∞ is exponentially fast in6499

each Ck norm, we have that Rg̃(t) converges to r exponentially fast under the6500

modified Ricci flow. We also have that ∥∇̃kRg̃(t)∥g̃(t) decays exponentially6501

to 0 as t → ∞ for each positive integer k. Since the solution g(t) satisfies6502

Rg̃(t) = Rg(t)◦ and ∇̃kRg̃(t) = φ∗
t∇k

g(t)Rg(t), we have that Rg(t) converges6503

to r exponentially fast and each ∥∇̃kRg̃(t)∥ decays exponentially to 0 as6504

t→∞. Therefore, the solution g(t) to the normalized Ricci flow converges6505

exponentially fast in each Ck norm to a smooth Riemannian metric g∞.6506

Since Rg(t) converges to r, we conclude that Rg∞ ≡ r.6507
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14.13. The entropy and Harnack estimates6508

In this section we discuss the entropy and Harnack estimates that are used6509

in the proof of the key estimate in Proposition 14.23, which says that the6510

scalar curvature under the normalized Ricci flow is uniformly bounded from6511

below by a positive constant.6512

14.13.1. The general idea of entropy. The idea of entropy is important6513

in thermodynamics, statistical mechanics, information theory, probability6514

theory, and partial differential equations.6515

Let n be a positive integer and suppose that p := {p1, . . . , pn} is a6516

(discrete) probability distribution of a set of n elements; that is,
∑n

i=1 pi = 1.6517

Then the entropy of this probability distribution is defined to be equal to6518

(14.119) N(p) := −
n∑

i=1

pi ln(pi).

14.13.2. Entropy for the heat equation. Let (Mn, g) be a closed Rie-6519

mannian manifold and let f :Mn → R be a positive function with
∫
Mn fdµ =6520

1. The relative entropy of the probability distribution fdµ is defined as6521

(14.120) N(f) := −
∫
Mn

f ln(f)dµ.

Now suppose that f(t) :Mn → R is a solution to the heat equation6522

(14.121)
∂f

∂t
= ∆f.

We compute that

dN

dt
= −

∫
Mn

(
ln(f)

∂f

∂t
+ f

∂

∂t
ln(f)

)
dµ

= −
∫
Mn

(ln(f)∆f +∆f) dµ

=

∫
Mn

∥∇f∥2

f
dµ

≥ 0,

where we integrated by parts and used the divergence theorem. Thus, the6523

entropy of a solution to the heat equation is a non-decreasing function of6524

time.6525
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14.13.3. Entropy in comparison to Lp-norms. For any real number6526

p > 1, we have6527

(14.122)

∫
Mn

f ln f dµ ≤ 2

(∫
Mn

|f − 1|pdµ
)1/p

+
2

p− 1

∫
Mn

|f − 1|pdµ.

Now recall that the Lp-norm of a function f :Mn → R is defined by6528

(14.123) ∥f∥p :=
(∫

Mn

|f |pdµ
)1/p

.

Hölder’s inequality says that for any α, β ∈ [1,∞] with 1
α + 1

β = 1,3 we have6529

(14.124) ∥fg∥1 ≤ ∥f∥α∥g∥β
for any functions f and g.6530

Now suppose that
∫
Mn dµ = 1 and let q > p > 1. By Hölder’s inequality

with α = q
p , we have

(∥f∥p)p = ∥|f |p∥1 = ∥|f |p · 1∥1 ≤ ∥|f |p∥α∥1∥β

= ∥|f |p∥ q
p
=

(∫
Mn

|f |qdµ
)p/q

= ∥f∥pq .

Hence,6531

(14.125) ∥f∥p ≤ ∥f∥q.

So, for q > p > 1, the Lq-norm is “stronger” than the Lp-norm in the sense6532

that ∥f∥q ≤ C tells you more than ∥f∥p ≤ C.6533

Now, by (14.122), the entropy satisfies6534

(14.126)

∫
Mn

f ln f dµ ≤ 2∥f − 1∥p +
2

p− 1
∥f − 1∥pp.

So, the Lp-distance ∥f −1∥p between f and the constant function 1 controls6535

the entropy of f .6536

We will now see that the idea of entropy is useful in Ricci flow.6537

14.13.4. Hamilton’s entropy estimate. Let (M2, g) be a closed Rie-6538

mannian surface. If g has positive curvature, then we can defineHamilton’s6539

surface entropy by6540

(14.127) N(g) :=

∫
M2

R lnRdµ.

(This is the opposite of the usual sign convention for entropy, so we want to6541

show that Hamilton’s entropy decreases.)6542

3We use the convention that 1
∞ := 0.

https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
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Let (M2, g(t)) be a Ricci flow on a closed surface with positive curvature.
The surface entropy monotonicity formula is:

d

dt
N(g(t)) = −2

∫
M2

∥∥∥∥−1

2
Rg +∇2f

∥∥∥∥2 dµ− ∫
M2

∥∇R+R∇f∥2

R
dµ

(14.128)

= −2
∫
M2

∥β∥2dµ− 4

∫
M2

∥ div(β)∥2

R
dµ

≤ 0.

This implies Hamilton’s result that his surface entropy is monotonically6543

non-increasing.6544

How did we obtain this monotonicity formula? The second equality in
(14.128) follows from the definition of β and the calculations:

div(β) = −1

2
∇R+ div(∇2f)

and

div(∇2f) =
∑
i=1

∇3f(ei, ·, ei)

=
∑
i=1

∇3f(·, ei, ei) + Ric(∇f)

= ∇(∆f) + 1

2
R∇f

= ∇R+
1

2
R∇f.

The first equality in (14.128) follows from the formula6545

(14.129)
d

dt
N(g(t)) = −

∫
M2

∥∇R∥2

R
dµ+

∫
M2

R
2
dµ

and an integration by parts. To see (14.129), we calculate as follows. Recall
by (14.18) that

∂

∂t
dµ = −Rdµ.

By combining this with (14.29), we obtain

∂

∂t
(Rdµ) =

∂R

∂t
dµ+R

∂

∂t
dµ = ∆Rdµ.(14.130)

Note that a consistency check for this formula is that as a consequence we
have

d

dt

∫
M2

Rdµ =

∫
M2

∆Rdµ = 0,

where the last equality is by the divergence theorem. Indeed, we already6546

know this from the Gauss–Bonnet formula.6547
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Now, using (14.29) and (14.130), we calculate that

d

dt
N =

d

dt

∫
M2

lnRRdµ

=

∫
M2

∂

∂t
(lnR)Rdµ+

∫
M2

lnR
∂

∂t
(Rdµ)

=

∫
M2

1

R
(∆R+RR)Rdµ+

∫
M2

lnR∆Rdµ.

We can now integrate by parts to obtain

d

dt
N = −

∫
M2

∥∇R∥2

R
dµ+

∫
M2

R
2
dµ,

where we also used that
∫
M2 RRdµ =

∫
M2 R

2
dµ. See e.g. [CK04] for6548

an exposition of the details of how to carry out the integration by parts to6549

obtain (14.128) from (14.129).6550

14.13.5. Hamilton’s Harnack estimate. In the study of the Ricci flow6551

on surfaces, β is a natural quantity. Recall from the previous subsection6552

that6553

(14.131) 2 div(β) = ∇R+R∇f.
By simply taking a second divergence, we obtain

2 div2(β) = div(∇R+R∇f)(14.132)

= ∆R+ ⟨∇R,∇f⟩+RR,

where we used that ∆f = R. Now (14.131) implies that

−2∇R
R
· div(β) = −∥∇R∥

2

R
− ⟨∇R,∇f⟩.

Therefore,

Q :=
2

R
div2(β)− 2

∇R
R2
· div(β)(14.133)

=
∆R

R
− ∥∇R∥

2

R2
+R

= ∆ lnR+R− r.
The quantity Q is called Hamilton’s Harnack quantity. As we will see6554

in the next section, Q vanishes on self-similar solutions to the Ricci flow,6555

called Ricci solitons (as we will see, β vanishes on Ricci solitons). This is6556

one motivation for considering Q as a natural quantity for which to compute6557

the evolution equation.6558

One can show the estimate6559

(14.134) Q(x, t) ≥ − Crert

Cert − 1
=: q(t),
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where C > 1 is a constant depending only on g0. Note that the function6560

q(t) is increasing. In particular, we have that if t ≥ 1, then6561

(14.135) Q(x, t) ≥ − Cr

C − 1
=: −C ′

for all x ∈M2. This is called the Harnack estimate for the Ricci flow on6562

surfaces.6563

The proof of (14.134) is simply to derive the following heat-type inequal-6564

ity:6565

(14.136)
∂Q

∂t
≥ ∆Q+ 2 ⟨∇ lnR,∇Q⟩+Q2 + rQ.

By taking C := q0
q0+r > 1, where q0 := minQ(·, 0), we have that q(t) satisfies6566

the ODE dq
dt = q2 + rq with q(0) = Cr

C−1 = q0. Now, applying the parabolic6567

maximum principle to (14.136) yields the Harnack estimate (14.134).6568

Now, let us see why the Harnack estimate for the Ricci flow on surfaces6569

is useful.6570

Using (14.29), we calculate that

∂

∂t
lnR =

1

R

∂R

∂t
=

1

R
(∆R+R2 − rR)(14.137)

= ∆ lnR+ ∥∇ lnR∥2 +R− r.

Therefore, the Harnack quantity Q defined by (14.133) may be re-expressed6571

as the space-time gradient quantity6572

(14.138) Q =
∂

∂t
lnR− ∥∇ lnR∥2.

Thus, the Harnack estimate (14.135) says that6573

(14.139)
∂

∂t
lnR− ∥∇ lnR∥2 ≥ −C ′

for some constant C ′, provided t ≥ 1.6574

In order to compare the curvatures of the solution at two different points
(x1, t1) and (x2, t2) in space-time, we will integrate the differential expression
Q along paths in space time. For this purpose, let

γ : [t1, t2]→M2

be a path with γ(t1) = x1 and γ(t2) = x2. Consider the associated space-
time path

γ̃ : [t1, t2]→M2 × [t1, t2]

defined by6575

(14.140) γ̃(t) := (γ(t), t).

Observe that γ̃(t1) = (x1, t1) and γ̃(t2) = (x2, t2).6576
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We now apply the Fundamental Theorem of Calculus to the one-variable
function lnR along γ̃ to obtain

lnR(x2, t2)− lnR(x1, t1)(14.141)

=

∫ t2

t1

d

dt
(lnR(γ(t), t)dt

=

∫ t2

t1

(
∇ lnR(γ(t), t) · γ′(t) + ∂ lnR

∂t
(γ(t), t)

)
dt,

where the dot product · denotes the inner product with respect to the metric
g(t), also denoted by ⟨·, ·⟩. By applying the Harnack estimate (14.139) to
this, we obtain

ln
R(x2, t2)

R(x1, t1)
≥
∫ t2

t1

(
∇ lnR(γ(t), t) · γ′(t) + ∥∇ lnR∥2(γ(t), t)− C ′) dt

≥ −
∫ t2

t1

1

4
∥γ′(t)∥2g(t)dt− C

′(t2 − t1),

where to obtain the last inequality we used the elementary (Peter–Paul)
inequality −ab+ b2 ≥ −1

4a
2 and that

∇ lnR(γ(t), t) · γ′(t) ≥ −∥∇ lnR(γ(t), t)∥g(t)∥γ′(t)∥g(t).

We have proved the following:6577

Proposition 14.24. Let (M2, g(t)) be a solution to the normalized Ricci6578

flow on surfaces with positive curvature. Let x1, x2 ∈M2 and t1 < t2. Then6579

for any path γ : [t1, t2]→M2 with γ(t1) = x1 and γ(t2) = x2, we have6580

(14.142)
R(x2, t2)

R(x1, t1)
≥ e−C′(t2−t1) exp

(
−
∫ t2

t1

1

4
∥γ′(t)∥2g(t)dt

)
.

To get the best estimate from (14.142), on the right-hand side we should6581

take the supremum over all such paths γ. Since, in general we cannot com-6582

pute the supremum, we will be satisfied with a rough lower estimate of the6583

right-hand side which indeed will suffice for our purposes.6584

14.13.6. The uniform estimate for the scalar curvature. We now6585

proceed to obtain a uniform estimate for the scalar curvature R under the6586

normalized Ricci flow.6587

14.13.6.1. Uniform equivalence of the metrics on short time intervals. Let
t1 be any positive time. Let x1 ∈M2 be a point at which R(·, t1) attains its
maximum. Let K1 := maxM2 R(·, t1) = R(x1, t1). We have

d

dt
Rmax(t) ≤ (Rmax(t))

2 − rRmax(t) ≤ (Rmax(t))
2.
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The solution to the ODE dk
dt = k2 with the initial condition k(t1) = K1 is

given by

k(t) =
1

1
K1

+ t1 − t

for t ∈ [t1, t1 + 1
K1

]. Therefore, by the parabolic maximum principle, we6588

have that6589

(14.143) R(x, t) ≤ 2K1

for all x ∈M2 and t ∈ [t1, t1 +
1

2K1
].6590

Let t2 = t1 +
1

2K1
. Let t̄ ∈ [t1, t2]. We have for any x ∈M2,

g(x, t2) = exp

(∫ t2

t̄
(r −R(x, t))dt

)
g(x, t̄)

≥ exp

(∫ t2

t̄
(r − 2K1)dt

)
g(x, t̄)

≥ exp

(
r

2K1
− 1

)
g(x, t̄)

≥ e−1g(x, t̄)

for all t̄ ∈ [t1, t2]. That is, we have:6591

Lemma 14.25. For any normalized Ricci flow, we have6592

(14.144) g(x, t) ≤ eg(x, t2)

for all x ∈M2 and t ∈ [t1, t2], where t2 = t1 +
1

2K1
.6593

14.13.6.2. Smoothing property of the curvature function. Let x2 be a point
inM2 and let t2 = t1+

1
2K1

, where (x1, t1) is as in the previous subsection so

that R(x1, t1) = maxM2 R(·, t1) = K1. Let γ : [t1, t2] → M2 be a constant-
speed minimal geodesic with respect to the metric g(t2) joining the point x1
to the point x2. Then

∥γ′(t)∥g(t2) =
dg(t2)(x1, x2)

t2 − t1
.

Further assume that K ≥ 1. By Proposition 14.24, we have

R(x2, t2)

R(x1, t1)
≥ e−C′(t2−t1) exp

(
−
∫ t2

t1

1

4
∥γ′(t)∥2g(t)dt

)
(14.145)

≥ e−
C′
2K exp

(
−e
∫ t2

t1

1

4
∥γ′(t)∥2g(t2)dt

)
= e−

C′
2K exp

(
− e

4

d2g(t2)(x1, x2)

t2 − t1

)
.
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Recall that t2 − t1 = 1
2K1

. Thus, if we assume that dg(t2)(x1, x2) ≤
1√
K1

,6594

then6595

(14.146)
R(x2, t2)

R(x1, t1)
≥ e

− C′
2K1 e−

e
2 ≥ e−

C′+e
2

where the last inequality is since K1 ≥ 1. Since R(x1, t1) = K1, we obtain:6596

Lemma 14.26.

(14.147) R(x2, t2) ≥ e−
C′+e

2 K1

for all x2 ∈ Bg(t2)

1/
√
K1

(x1).6597

This lemma reflects the smoothing property of the curvature function.6598

Namely, if the curvature is large at a point (x1, t1), then the curvature is6599

large in a small ball centered at that point at a slightly later time.6600

14.13.6.3. Combining the entropy and differential Harnack estimates. We6601

are now in a position to combine the entropy and differential Harnack esti-6602

mates to obtain the uniform bound for the scalar curvature.6603

Lemma 14.27. There exists a universal constant c > 0 such that6604

(14.148) Area(B
g(t2)

1/
√
K1

(x1)) ≥
c

K1
.

That is, with respect to g(t2), the ball of radius ρ := 1√
K1

centered at x1 has6605

area at least cρ2.6606

Now recall that the monotonicity of the surface entropy says that there
exists a constant (depending only on the initial metric g0) such that

N(g(t)) =

∫
M2

R lnRdµ ≤ C

for all t ∈ [0,∞). On the other hand, recall the elementary inequality that

for any u ∈ (0,∞), u lnu ≥ −1
e . Thus we have that, where Bt2 := Bg(t2),∫

B
t2
ρ (x1)

R lnRdµ(t2) =

∫
M2

R lnRdµ(t2)−
∫
M2\Bt2

ρ (x1)
R lnRdµ(t2)

≤ C +
Area(g(t2)

e
,

where the right-hand side is constant depending only on g0. By applying
Lemmas 14.26 and 14.27, we obtain that

C +
Area(g0)

e
≥ Area(Bt2

ρ (x1))e
−C′+e

2 K1 ln
(
e−

C′+e
2 K1

)
≥ ce−

C′+e
2 ln

(
e−

C′+e
2 K1

)
.
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This implies that for any time t1, maxt1 R(·, t1) ≤ K1 is bounded by a6607

constant depending only on g0. Since t1 is arbitrary, this implies that the6608

scalar curvature of the solution to the normalized Ricci flow is uniformly6609

bounded.6610

14.13.6.4. The uniform positive lower bound for the scalar curvature. Since6611

the metrics g(t), t ∈ [0,∞), all have positive and uniformly bounded cur-6612

vature and constant area, we have that the diameters of g(t) are uniformly6613

bounded from above (see e.g. Corollary 5.52 in [CK04]). We claim that6614

we can thus use the Harnack estimate again to obtain a uniform positive6615

lower bound for the scalar curvatures of g(t). This will complete the proof6616

of Proposition 14.23 and hence also of Theorem 14.21 in the χ > 0 case.6617

Proof of the lower bound. Let C be such that R(x, t) ≤ C for all x ∈M2

and t ∈ [0,∞) and diam(g(t)) ≤ C for all t ∈ [0,∞). Let (x2, t2) be a point
with t2 ≥ 1. Let t1 := t2 − 1 and let x1 be a point at which

R(x1, t1) = r;

such a point always exists since r is equal to the average of R at time t1.
By the same argument as to obtain (14.145), we have

R(x2, t2)

R(x1, t1)
≥ e−

C′
2C exp

(
− e

4

d2g(t2)(x1, x2)

t2 − t1

)
.

By applying the uniform diameter bound to this inequality, we obtain6618

(14.149) R(x2, t2) ≥ re−
C′
2C exp

(
−eC2

4

)
.

This is the desired uniform positive lower bound for the scalar curvature.6619

14.14. Ricci solitons6620

One may consider the possibility of a normalized Ricci flow on a surface M2
6621

that just moves by diffeomorphisms. That is, the possibility that the solution6622

is of the form g(t) = ϕ∗t g0 for some 1-parameter family of diffeomorphisms of6623

M2. Recall that isometric metrics are geometrically the same. Thus, such a6624

solution is geometrically a fixed point of the normalized Ricci flow. One can6625

think about this abstractly. That is, let Met denote the set of Riemannian6626

metrics on M2. Let Diff denote the group of self-diffeomorphisms of M2.6627

The group Diff acts on the set Met by pull-back: We have6628

(14.150) σ : Diff×Met→Met

defined by6629

(14.151) σ(ϕ, g) := ϕ∗(g).
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The quotient space Met/Diff is the set of isometry classes of Riemannian
metrics on M2. A Ricci flow g(t), t ∈ I, may equivalently be considered as
the path γ : I → Met defined by γ(t) := g(t). Let π : Met → Met/Diff be
the canonical projection map. Then

π ◦ γ : I →Met/Diff

maps t to the isometry class of g(t). We see that a Ricci flow g(t) evolves6630

by diffeomorphisms if and only if the associated path π ◦ γ is constant.6631

14.14.1. Shrinking and steady Ricci solitons. It has been long be-6632

lieved that constant curvature Riemannian metrics are the most natural6633

metrics. Both the uniformization theorem and the Ricci flow version of its6634

proof support this belief. The Ricci flow proof actually first proves conver-6635

gence of the modified flow to what is called a shrinking Ricci soliton, which6636

we now define.6637

Definition 14.28. A Riemannian surface (M2, g) and a function f on M2
6638

is called a shrinking Ricci soliton if6639

(14.152) Rg := (R− r)g = 2∇2f.

By (7.29), the shrinking Ricci soliton equation (14.152) says that6640

(14.153) (R− r)g = L∇fg.

We claim that this equation is an infinitesimal version of the condition that
a solution g(t) to the normalized Ricci flow is of the form g(t) = ϕ∗t g0
for some 1-parameter family of diffeomorphisms {ϕt}t∈R. To see this, we
compute that

(Rg(t) − r)g(t) =
∂

∂t
g(t) =

∂

∂t
(ϕ∗t g0) = Ld(ϕ−1

t )( ∂
∂t

ϕt)g(t).

Hence, if6641

(14.154) d(ϕ−1
t )

(
∂

∂t
ϕt

)
= ∇g(t)f(t)

for some function f(t) :M2 → R, then we obtain6642

(14.155) (Rg(t) − r)g(t) = L∇f(t)g(t).

Thus, in this case the Riemannian surface (M2, g(t)) with f(t) is a shrinking6643

Ricci soliton. For such solutions to the normalized Ricci flow, the metric6644

g(t) is geometrically independent of time and moving only by the pull-back6645

by diffeomorphisms. The reason we call it a shrinking Ricci soliton is as6646

follows. Define6647

(14.156) g̃(t̃) := e−r0tg(t) = e−r0tϕ∗t g0,
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where t̃(t) := 1
r0
(1 − e−r0t). By the discussion at the end of §14.5, we6648

have that g̃(t̃) is a solution to the unnormalized Ricci flow. These rescaled6649

metrics satisfy the Ricci flow and evolve by diffeomorphisms and scalings.6650

Since r0 > 0 and since t(t̃) = − 1
r0

ln(1 − r0t̃) is an increasing function ,6651

we have the metrics g̃(t̃) are shrinking forward in time. This justifies the6652

moniker “shrinking Ricci soliton”.6653

In the previous section, we proved (albeit omitting some key details) that
any solution g̃(t) to the modified Ricci flow on S2 converges to a smooth
metric g̃∞ which satisfies the equation (14.116):

Rg̃∞ g̃∞ = 2∇2
g̃∞ f̃∞.

Thus, we proved for that a flow that is geometrically the same as the nor-6654

malized Ricci flow (i.e., the solutions of the two equations differ by the6655

pull-back by diffeomorphisms), the solutions converge to shrinking gradient6656

Ricci solitons. We then used the Kazdan–Warner identity to prove that any6657

shrinking Ricci soliton on S2 must have constant curvature. So we proved6658

that the solution to the modified Ricci flow converges to a constant curva-6659

ture metric. Moreover, we can conclude the same for the normalized Ricci6660

flow because of the exponential rate of convergence to constant curvature,6661

including the derivatives of curvature decaying exponentially to 0. That is,6662

the solutions to the normalized Ricci flow converge to constant curvature6663

metrics. This completes the proof of the differential geometric version of the6664

uniformization theorem.6665

The discussion above begs the question: Are there Ricci solitons that6666

are not constant curvature metrics (so that the potential functions are con-6667

stants)?6668

We first consider steady Ricci solitons. These are Riemannian sur-6669

faces (M2, g), together with functions f :M2 → R, that satisfy the equation6670

(cf. (14.152)):6671

(14.157) Rg = 2∇2f.

14.14.2. Cigar soliton. An iconic example of a steady gradient Ricci soli-6672

ton is the 2-dimensional cigar soliton. Its underlying manifold is the plane6673

R2. Its Riemannian metric is defined by6674

(14.158) gΣ(x
1, x2) :=

4gEuc
1 + (x1)2 + (x2)2

,

where gEuc = dx1⊗dx1+dx2⊗dx2 is the Euclidean metric, and its potential6675

function is defined by6676

(14.159) fΣ
(
x1, x2

)
:= − ln

(
1 + (x1)2 + (x2)2

)
.
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See Figure 14.14.1. The reason for the factor of 4 in (14.158) is so that the6677

maximum scalar curvature of gΣ will be equal to 1.6678

0

Figure 14.14.1. The cigar soliton metric gΣ on R2.

The (exterior) derivative of the potential function fΣ is given by6679

(14.160) dfΣ = − 1

1 + (x1)2 + (x2)2
(2x1dx1 + 2x2dx2).

Thus, the gradient, with respect to gΣ, of the potential function is given by6680

(14.161) ∇gΣfΣ
(
x1, x2

)
=

(
−x

1

2
,−x

2

2

)
.

Recall from (8.46) that if g̃ = e2ug, then

Kg̃ = e−2u(Kg −∆gu).

Using this, we compute that the Gauss curvature of gΣ is equal to

KΣ = −1 + (x1)2 + (x2)2

4
∆Euc

(
1

2
ln

4

1 + (x1)2 + (x2)2

)
(14.162)

=
1

2(1 + (x1)2 + (x2)2)
.

On the Riemannian surface (R2, gΣ) we have the global orthornormal
frame field defined by

e1 :=
√

1 + (x1)2 + (x2)2
∂

∂x1
, e2 :=

√
1 + (x1)2 + (x2)2

∂

∂x2
.

The Hessian of fΣ with respect to this frame field is given by

∇2fΣ(ei, ej) = ei(ej(fΣ))−
2∑

k=1

ωk
j (ei)ek(fΣ)(14.163)

We have that (eEuc)1 = ∂
∂x1 , (eEuc)2 = ∂

∂x2 is a global orthonormal frame
field for the Euclidean metric gEuc. Its dual orthonormal coframe field is
given by (ωEuc)

1 = dx1, (ωEuc)
2 = dx2. By (8.43) and since (ωEuc)

i
j = 0, we

have the connection 1-forms ωi
j of gΣ with respect to the orthonormal frame
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e1, e2 are given by

ωk
j =

∂

∂xj

(
1

2
ln

4

1 + (x1)2 + (x2)2

)
dxk

− ∂

∂xk

(
1

2
ln

4

1 + (x1)2 + (x2)2

)
dxj

=
xkdxj − xjdxk

1 + (x1)2 + (x2)2
.

Thus,

ωk
j (ei) =

xkδij − xjδik√
1 + (x1)2 + (x2)2

,

where δij is the Kronecker delta symbol. We have

ej(fΣ) = −
2xj√

1 + (x1)2 + (x2)2

and

ei(ej(fΣ)) = −2δij +
2xixj

1 + (x1)2 + (x2)2
.

Moreover,

−
2∑

k=1

ωk
j (ei)ek(fΣ) =

2∑
k=1

xkδij − xjδik√
1 + (x1)2 + (x2)2

2xk√
1 + (x1)2 + (x2)2

=
2((x1)2 + (x2)2)δij − 2xixj

1 + (x1)2 + (x2)2
.

Hence, by (14.163) and by summing the last two displays, we obtain

∇2fΣ(ei, ej) = −
2δij√

1 + (x1)2 + (x2)2
= −KΣgΣ(ei, ej).

This proves that the cigar soliton (R2, gΣ, fΣ) is a steady gradient Ricci6681

soliton.6682

Exercise 14.3. Show that the cigar soliton metric, defined by (14.158), may6683

be expressed (except at the origin 02) by a change of coordinates as6684

(14.164) gΣ = ds2 + tanh2(s)dθ2,

for s ∈ (0,∞) and θ ∈ R/2πZ.6685

Exercise 14.4. Prove that the Gauss curvature of the cigar soliton metric6686

is given by6687

(14.165) KΣ = 2 sech2(s).
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Figure 14.14.2. The teardrop (L) and football (R) shrinking Ricci solitons.

14.14.3. Shrinking Ricci solitons on orbifolds. Hamilton proved that6688

any shrinking Ricci soliton on a bad orbifold must be rotationally symmetric.6689

He also proved that the soliton is unique up to scaling and diffeomorphisms.6690

The proof (see case 2 in the proof of Lemma 14.22) of the fact that on S2
6691

the only shrinking Ricci solitons are the constant curvature metrics uses the6692

Kazdan–Warner identity and hence uses the uniformization theorem. Chen,6693

Lu, and Tian [CLT06] proved this result without using the uniformization6694

theorem.6695

14.15. Uniformization of 2-dimensional orbifolds6696

Firstly, we remark that the Hodge Decomposition Theorem 11.18 extends6697

to orbifolds. In particular, we have the following consequence in dimension6698

2 (cf. Corollary 11.19).6699

Proposition 14.29. Let (O2, g) be a closed Riemannian orbifold with iso-6700

lated singularities. If ϕ : O2 → R is a function satisfying
∫
O2 ϕdµ = 0, then6701

there exists a function f : O2 → R satisfying the Poisson equation6702

(14.166) ∆f = ϕ.

Thus, for any closed Riemannian orbifold (O2, g) with isolated singular-6703

ities, there exists a function f : O2 → R satisfying6704

(14.167) ∆f = R− r,

where r is the average of the scalar curvature R.6705

By the works of Wu [Wu91, CW91], we have the following.6706

Theorem 14.30 (Uniformization of 2-dimensional orbifolds). Let (O2, g0)6707

be a 2-dimensional closed oriented Riemannian orbifold. Then there exists a6708

solution g(t) to the modified Ricci flow for all time t ∈ [0,∞) with g(0) = g0.6709

As t→∞, g(t) converges in each Ck-norm to a C∞ metric g∞. There exists6710

a function f∞ on O2 such that (O2, g∞) together with f∞ is a shrinking Ricci6711
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soliton. That is,6712

(14.168) (Rg∞ − r)g∞ = 2∇2
g∞f∞.

(Note that ∆g∞f∞ = Rg∞ − r.) For a good orbifold, both the normalized6713

and modified Ricci flows converge to constant curvature metrics.6714

For good orbifolds, this result is originally due to Hamilton. Any closed6715

orbifold that admits a constant curvature metric must be a good orbifold.6716

Therefore, any shrinking gradient Ricci soliton on a bad closed orbifold must6717

be non-trivial; that is, its potential and curvature functions are not constant.6718


