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The Drawings of Graphs, the Planarity, and Relevant Graph

Parameters
FLAK GHIRE e R

Abstract: Planar graphs are important ones in the study of graph theory. Based on
drawings of graphs on the plane, we briefly introduce several graph-drawing
parameters, and survey recent developments and open problems concerning these

parameters. | also present some our recent results on this subject.
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Plucking Polynomial of Rooted Trees

BEs Rmie ke

Abstract: For each embedded rooted tree on the upper half plane, Jozef Przycycki
introduced the notion of plucking polynomial in 2015. In this talk, | will give a short
introduction to this polynomial and discuss some basic questions about it.

On Alexander Polynomials of Graphs
REWE (TR

Abstract: Using Alexander modules, one can define a polynomial invariant for a
certain class of graphs with a balanced coloring. We will give different interpretations
of this polynomial by Kauffman state formula and MOY relations. This is joint work

with Yuanyuan Bao.
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The Thickness and Split Number of Graphs
75O NE YN

Abstract: The thickness of a graph G is the minimum number of planar subgraphs
into which G can be decomposed. A k -split operation substitutes a vertex v by at
most k new vertices such that each neighbor of v is connected to at least one of
the new vertices. The split number of a graph G is the smallest k such that the
graph is k -splittable into a planar graph. In this talk, some recent progresses in both
thickness and split number of graphs will be introduced.



Zip Product of Graphs and Crossing Numbers
RRKFHER IR 5 — a7 Fe )
Abstract: D. Bokal proved that the crossing number is additive for the zip product
under the condition of having two coherent bundles in the zipped graphs. This
property is very effective when dealing with the crossing numbers of (capped)
Cartesian product of trees with graphs containing a dominating vertex. In this talk, we
first weaken the additive condition for the zip product. Based on the new condition,
we then establish some general expressions for bounding the crossing numbers of
(capped) Cartesian product of trees with graphs (possibly without dominating vertex).
Exact values of the crossing numbers for Cartesian product of trees with most graphs
of order at most five are obtained by applying these expressions, which extend some
previous results due to M. Kle\v{s}\v{c}. In fact, our results can also be applied to
deal with the Cartesian product of trees with graphs of order more than five. This is

joint work with Yuangiu Huang, Fengmin Dong, and Eng Guan Tay.

Demigenus Embedding of Signed Complete Bipartite
Graphs

B MR (R RHR S

Abstract: A signed graph is a pair 2=(G,9) that consists of a graph G=(V,E) 4
signature or sign mapping @ from E to the sign group ). Given an unsigned
graph G | a natural question is which signature 9 gives (G.9) the largest
demigenus. That leads to the quantity P(G)=mx{d(G,0)|o:E —>{+-}} that is, the
largest demigenus of any signature on a graph G . Archdeacon proposed the open

problem: Find D(Kmv"), the largest demigenus over all signatures on the complete
bipartite graph K, This talk focuses on recent developments on Archdeacon’s

open problem.



Quadrangular Embeddings of Complete Graphs and the
Even Map Color Theorem

ST (R R )

Abstract: Hartsfield and Ringel constructed orientable quadrangular embeddings of
the complete graph Kn for n =5 (mod 8), and nonorientable ones forn>9 and n = 1
(mod 4). These provide minimal quadrangulations of their underlying surfaces. We
extend these results to determine, for every complete graph Kn, n > 4, the minimum
genus, both orientable and nonorientable, for the surface in which Kn has an
embedding with all faces of degree at least 4, and also for the surface in which Kn has
an embedding with all faces of even degree. These last embeddings provide sharpness
examples for a result of Hutchinson bounding the chromatic number of graphs
embedded with all faces of even degree, completing the proof of the Even Map Color
Theorem. We also show that if a connected simple graph G has a perfect matching
and a cycle then the lexicographic product G[K4] has orientable and nonorientable
quadrangular embeddings; this provides new examples of minimal quadrangulations.
This is a joint work with S. Lawrencenko, B. F. Chen, M. N. Ellingham, N. Hartsfield,
H. Yang, D. Yeand X. Y. Zha.
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[1]. Gradisar H, et al. (2013) Design of a single-chain polypeptide tetrahedron
assembled from coiled-coil segments. Nature Chem. Biol. 9: 362—366.

[2]. Ljubetic A, et al. (2017) Design of coiled-coil protein-origami cages that

self-assemble in vitro and in vivo. Nat Biotechnol 35:1094-1101.

Spanning Trees in Bipartite Graphs

X & (USRS BN pe e B oK)

Abstract: In this talk, we will introduce the electrical network methord in counting
spanning trees. We will obtain the number of spanning trees in complete bipartite
graphs with or without some certain structures. A conjecture by Ehrenborg on a tight

upper bound for the number of spanning trees in a bipartite graph will be discussed.

Projectors in the Virtual Temperley-Lieb Algebra
XBHFFE GHFE R

Abstract: The n-strand virtual Temperley-Lieb algebra VTLn is an algebra over the

€ ViV Vot The  diagrammatic

ring , which is generated by {e.
formulation of VTLn is equivalent to Brauer algebra. In particular, the
Temperley-Lieb algebra TLn is a sub-algebra of VTLn, which is generated by
e &} \wenzl and Jones had proposed the notion of projectors in
Temperley-Lieb algebra. Later, people called them Jones-Wenzl projectors. In this
talk, we present a method of defining projectors in the virtual Temperley-Lieb algebra,
that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. And we give

an explicit formula for the projectors.
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